Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 24
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents results of investigations on the application of CuO-water nanofluids for intensification of convective heat transfer. Performance of nanofluids with 2.2 and 4.0 vol.% CuO NPs (nanoparticles) content were examined with regard to heat transfer coefficient and pressure losses in case of turbulent flow in a tube. Negligible impact of examined nanofluid on heat transfer improvement was found. Moreover, measured pressure losses significantly exceeded those determined for primary base liquid. The observations showed that application of nanofluid for heat transfer intensification with a relatively high solid load in the examined flow range is rather controversial.
Go to article

Authors and Affiliations

Grzegorz Dzido
Michał Drzazga
Marcin Lemanowicz
Andrzej T. Gierczycki
Download PDF Download RIS Download Bibtex

Abstract

Experimental investigation of heat transfer during pool boiling of two nanofluids, i.e. water-Al2O3 and water-Cu has been carried out. Nanoparticles were tested at the concentration of 0.01%, 0.1%, and 1% by weight. The horizontal smooth stainless steel tubes having 10 mm OD and 0.6 mm wall thickness formed the test heater. The experiments have been performed to establish the influence of nanofluids concentration on heat transfer characteristics during boiling at different absolute operating pressure values, i.e. 200 kPa, ca. 100 kPa (atmospheric pressure) and 10 kPa. It was established that independent of nanoparticle materials (Al2O3 and Cu) and their concentration, an increase of operating pressure enhances heat transfer. Generally, independent of operating pressure, sub- and atmospheric pressure, and overpressure, an increase of nanoparticle concentration caused heat transfer augmentation.

Go to article

Authors and Affiliations

Janusz Cieśliński
Tomasz Kaczmarczyk
Download PDF Download RIS Download Bibtex

Abstract

This article reports the effects of CuO/water based coolant on specific fuel consumption and exhaust emissions of four stroke single cylinder diesel engine. The CuO nanoparticles of 27 nm were used to prepare the nanofluid-based engine coolant. Three different volume concentrations (i.e 0.05%, 0.1%, and 0.2%) of CuO/water nanofluids were prepared by using two-step method. The purpose of this study is to investigate the exhaust emissions (NOx), exhaust gas temperature and specific fuel consumption under different load conditions with CuO/water nanofluid. After a series of experiments, it was observed that the CuO/water nanofluids, even at low volume concentrations, have a significant influence on exhaust emissions. The experimental results revealed that, at full load condition, the specific fuel consumption was reduced by 8.6%, 15.1% and 21.1% for the addition of 0.05%, 0.1% and 0.2% CuO nanoparticles with water, respectively. Also, the emission tests were concluded that 881 ppm, 853 ppm and 833 ppm of NOx emissions were observed at high load with 0.05%, 0.1% and 0.2% volume concentrations of CuO/water nanofluids, respectively.

Go to article

Bibliography

[1] S.U.S. Choi and J.A. Eastman. Enhancing thermal conductivity of fluids with nanoparticles. In 1995 International mechanical engineering congress and exhibition. ASME, 12-17 Nov. 1995.
[2] M.A. Akhavan-Behabadi, F. Hekmatipour, S.M. Mirhabibi, and B. Sajadi. Experimental investigation of thermal–rheological properties and heat transfer behavior of the heat transfer oil–copper oxide (HTO–CuO) nanofluid in smooth tubes. Experimental Thermal and Fluid Science, 68:681–688, 2015.
[3] M.T.Naik, S.S. Fahad, L.S. Sundar, and M.K. Singh. Comparative study on thermal performance of twisted tape and wire coil inserts in turbulent flow using CuO/water nanofluid. Experimental Thermal and Fluid Science, 57:65–76, 2014.
[4] M.T. Naik, G.R. Janardana, and L.S. Sundar. Experimental investigation of heat transfer and friction factor with water–propylene glycol based CuO nanofluid in a tube with twisted tape inserts. International Communications in Heat and Mass Transfer, 46:13–21, 2013.
[5] J.J. Michael and S. Iniyan. Performance analysis of a copper sheet laminated photovoltaic thermal collector using copper oxide–water nanofluid. Solar Energy, 119:439–451, 2015.
[6] M. Bouhalleb and H. Abbassi. Natural convection in an inclined rectangular enclosure filled by CuO-H2O nanofluid, with sinusoidal temperature distribution. International Journal of Hydrogen Energy, 40(39):13676–13684, 2015.
[7] K. Goudarzi, E. Shojaeizadeh, and F. Nejati. An experimental investigation on the simultaneous effect of CuO-H2O nanofluid and receiver helical pipe on the thermal efficiency of a cylindrical solar collector. Applied Thermal Engineering, 73(1):1236–1243, 2014.
[8] Y. Abbassi, A.S. Shirani, and S. Asgarian. Two-phase mixture simulation of Al2O3/water nanofluid heat transfer in a non-uniform heat addition test section. Progress in Nuclear Energy, 83:356–364, 2015.
[9] H.K. Gupta, G.D. Agrawal, and J. Mathur. An experimental investigation of a low temperature Al2O3-H2O nanofluid based direct absorption solar collector. Solar Energy, 118:390–396, 2015.
[10] E. Shojaeizadeh, F. Veysi, and A. Kamandi. Exergy efficiency investigation and optimization of an Al2O3-water nanofluid based flat-plate solar collector. Energy and Buildings, 101:12–23, 2015.
[11] M.H. Esfe, A. Karimipour, W.-M. Yan, M. Akbari, M.R. Safaei, and M. Dahari. Experimental study on thermal conductivity of ethylene glycol based nanofluids containing Al2O3 nanoparticles. International Journal of Heat and Mass Transfer, 88:728–734, 2015.
[12] M.H. Esfe, S. Saedodin, M. Akbari, A. Karimipour, M. Afrand, S. Wongwises, M.R. Safaei, and M. Dahari. Experimental investigation and development of new correlations for thermal conductivity of cuo/eg–water nanofluid. International Communications in Heat and Mass Transfer, 65:47–51, 2015.
[13] L. S. Sundar, Md.H. Farooky, S.N. Sarada, and M.K. Singh. Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of Al2O3 and CuO nanofluids. International Communications in Heat and Mass Transfer, 41:41–46, 2013.
[14] R.S. Khedkar, S.S. Sonawane, and K.L.Wasewar. Influence of CuO nanoparticles in enhancing the thermal conductivity of water and monoethylene glycol based nanofluids. International Communications in Heat and Mass Transfer, 39(5):665–669, 2012.
[15] M.N. Rashin and J. Hemalatha. A novel ultrasonic approach to determine thermal conductivity in CuO-ethylene glycol nanofluids. Journal of Molecular Liquids, 197:257–262, 2014.
[16] R. Karthik, R.H. Nagarajan, B. Raja, and P. Damodharan. Thermal conductivity of CuO-DI water nanofluids using 3-ω measurement technique in a suspended micro-wire. Experimental Thermal and Fluid Science, 40:1–9, 2012.
[17] S. Harikrishnan and S. Kalaiselvam. Preparation and thermal characteristics of CuO-oleic acid nanofluids as a phase change material. Thermochimica Acta, 533:46–55, 2012.
[18] M. Saeedinia, M.A. Akhavan-Behabadi, and P. Razi. Thermal and rheological characteristics of CuO-base oil nanofluid flow inside a circular tube. I nternational Communications in Heat and Mass Transfer, 39(1):152–159, 2012.
[19] M.-S. Liu, M.C.-C. Lin, I.-T. Huang, and C.-C. Wang. Enhancement of thermal conductivity with CuO for nanofluids. Chemical Engineering & Technology, 29(1):72–77, 2006.
[20] M.-S. Liu, M.C.-C. Lin, and C.-C. Wang. Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system. Nanoscale Research Letters, 6(1):1–13, 2011.
[21] H.E. Patel, T. Sundararajan, and S.K. Das. An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. Journal of Nanoparticle Research, 12(3):1015–1031, 2010.
[22] D.P. Kulkarni, R.S. Vajjha, D.K. Das, and D. Oliva. Application of aluminum oxide nanofluids in diesel electric generator as jacket water coolant. Applied Thermal Engineering, 28(14-15):1774–1781, 2008.
[23] M. Raja, R. Vijayan, S. Suresh, and R. Vivekananthan. Effect of heat transfer enhancement and NOx emission using Al2O3/water nanofluid as coolant in CI engine. Indian Journal of Engineering & Materials Sciences, 20:443–449, 2013.
[24] S.M. Peyghambarzadeh, S.H. Hashemabadi, S.M. Hoseini, and M.S. Jamnani. Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a newcoolant for car radiators. International Communications in Heat and Mass Transfer, 38(9):1283–1290, 2011.
[25] S. Suresh, M. Chandrasekar, and S.C. Sekhar. Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under turbulent flow in a helically dimpled tube. Experimental Thermal and Fluid Science, 35(3):542–549, 2011.
[26] M. Naraki, S.M. Peyghambarzadeh, S.H. Hashemabadi, and Y. Vermahmoudi. Parametric study of overall heat transfer coefficient of Cuo/water nanofluids in a car radiator. International Journal of Thermal Sciences, 66:82–90, 2013.
[27] B. Xiao, Y. Yang, and L. Chen. Developing a novel form of thermal conductivity of nanofluids with Brownian motion effect by means of fractal geometry. Powder Technology, 239:409–414, 2013.
[28] C. Sayin and M. Canakci. Effects of injection timing on the engine performance and exhaust emissions of a dual-fuel diesel engine. Energy Conversion and Management, 50(1):203–213, 2009.
Go to article

Authors and Affiliations

S. Senthilraja
1
KCK Vijayakumar
2
R. Gangadevi
3

  1. Faculty of Mechanical Engineering, Anna University, Chennai, India
  2. Department of Mechanical Engineering, Vivekanandha Institute of Engineering & Technology for Women, Tiruchengode, India
  3. Department of Mechatronics Engineering, SRM University, Chennai, India
Download PDF Download RIS Download Bibtex

Abstract

In this study the results of simultaneous measurements of dynamic viscosity, thermal conductivity, electrical conductivity and pH of two nanofluids, i.e., thermal oil/Al2O3and thermal oil/TiO2are presented. Thermal oil is selected as a base liquid because of possible application in ORC systems as an intermediate heating agent. Nanoparticles were tested at the concentration of 0.1%, 1%, and 5% by weight within temperature range from 20°C to 60°C. Measurement devices were carefully calibrated by comparison obtained results for pure base liquid (thermal oil) with manufacturer’s data. The results obtained for tested nanofluids were compared with predictions made by use of existing models for liquid/solid particles mixtures.
Go to article

Authors and Affiliations

Janusz T. Cieśliński
Katarzyna Ronewicz
Sławomir Smoleń
Download PDF Download RIS Download Bibtex

Abstract

In this study, copper nanoparticles and nanofluids were synthesized by electrical explosion of wire (EEW) in liquid media such as water, ethanol, and acetone. The effect of the different conditions on the properties of the as-synthesized Cu powders and nanofluids were investigated. X-ray diffraction (XRD) analysis was employed to measure the phase of the as-synthesized powder. Only pure Cu phase appeared in case of acetone condition, but CuO and CuO2 phases could be observed in the others. The EEWed particle size was broadened from under 50 to 100 nm. The results showed that acetone was the best condition for achieving smaller particles, preventing the oxidation of the Cu particles and good stability of the nanofluids.

Go to article

Authors and Affiliations

M.-T. Nguyen
J.-H. Kim
J.-C. Kim
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with pool boiling of water-Al2O3and water-Cu nanofluids on rough and porous coated horizontal tubes. Commercially available stainless steel tubes having 10 mm outside diameter and 0.6 mm wall thickness were used to fabricate the test heater. The tube surface was roughed with emery paper 360 or polished with abrasive compound. Aluminium porous coatings of 0.15 mm thick with porosity of about 40% were produced by plasma spraying. The experiments were conducted under different absolute operating pressures, i.e., 200, 100, and 10 kPa. Nanoparticles were tested at the concentration of 0.01, 0.1, and 1% by weight. Ultrasonic vibration was used in order to stabilize the dispersion of the nanoparticles. It was observed that independent of operating pressure and roughness of the stainless steel tubes addition of even small amount of nanoparticles augments heat transfer in comparison to boiling of distilled water. Contrary to rough tubes boiling heat transfer coefficient of tested nanofluids on porous coated tubes was lower compared to that for distilled water while boiling on porous coated tubes. A correlation equation for prediction of the average heat transfer coefficient during boiling of nanofluids on smooth, rough and porous coated tubes is proposed. The correlation includes all tested variables in dimensionless form and is valid for low heat flux, i.e., below 100 kW/m2.

Go to article

Authors and Affiliations

Tomasz Z. Kaczmarczyk
Janusz T. Cieśliński
Download PDF Download RIS Download Bibtex

Abstract

This paper studies hydrodynamic and heat transfer performance of Al2O3/H2O nanofluid flowing through a Bessel-like converging pipe in laminar flow regime using the computational fluid dynamic approach. A parametric study was carried out on the effect of Reynolds number (300– 1200), convergence index (0-3) and nanoparticle concentration (0–3%) on the both hydrodynamic and thermal fields. The results showed the pressure drop profile along the axial length of the converging pipes is parabolic compared to the downward straight profile obtained in a straight pipe. Furthermore, an increase in convergence index, Reynolds number and nanoparticle concentration were found to enhance convective heat transfer performance. Also, a new empirical model was developed to estimates the average Nusselt number as a function of aforementioned variables. Finally, the result of the thermohydraulic performance evaluation criterion showed that the usage of Bessel-like converging pipes is advantageous at a low Reynolds number.
Go to article

Authors and Affiliations

Chukwuka S. Iweka
1
Olatomide G. Fadodun
2

  1. Department of Mechanical Engineering, Delta State Polytechnic, Ozoro, P.M.B 5, Ozoro 334111, Delta State, Nigeria
  2. Centre for Energy Research and Development, Obafemi Awolowo University, Ile-Ife 220282, Osun State, Nigeria
Download PDF Download RIS Download Bibtex

Abstract

Hybrid nanofluids is obtained by dispersing more than one nanoparticle into a base fluid. The work is concerned with a detailed numerical investigation of the thermal efficiency and hydraulic performance of hybrid nanofluids for circular jet impinges on a round plate. For this paper, a metal (Ag), a metal oxides (Al2O3) and a metal carbides (SiC) nanoparticle and their water based hybrid nanofluids are considered to analyse numerically with varying significant dimensionless parameters, i.e., the jet-to-plate spacing ratio, Reynolds number and volume fraction of nanoparticles. The results demonstrated that the efficiency of heat transfer of all nanofluids is increased by the addition of nanoparticle to the dispersed in water at constant Reynolds number. Moreover, the results illustrate that heat transfer efficacy and pumping power penalty both increased as jet-to-plate spacing ratio reduced. The jet-to-plate spacing ratio equal to 4 is the best as the percentage enhance heat transfer is maximum in this situation. Since both the heat transfer effect and pumping penalty increase using hybrid nanofluids, thermal performance factor increases or decreases depends on nanoparticles of nanofluids. It is evident that the analysis of these hybrid nanofluids will consider both the increase in heat efficiency and the pumping capacity. The best flow behaviour is achieved for SiC–Al2O3 hybrid nanofluids. New merit number is introduced for additional clarification.
Go to article

Bibliography

[1] Sun B., Zhang Y., Yang D., Li H.: Experimental study on heat transfer characteristics of hybrid nanofluid impinging jets. Appl. Therm. Eng. 151(2019), 556–566
[2] Vafaei M., Afrand M., Sina N., Kalbasi R., Sourani F., Teimouri H.: Evaluation of thermal conductivity of MgO-MWCNTs/EG hybrid nanofluids based on experimental data by selecting optimal artificial neural networks. Physica E (Lowdim. Sys. Nanostruct.) 85(2017), 90–96.
[3] Kumar D.D., Arasu A.V.: A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids. Renew. Sustain. Energy Rev. 81(2017), 2, 1669–1689.
[4] Minea A.A.: Challenges in hybrid nanofluids behavior in turbulent flow: recent research and numerical comparison. Renew Sustain. Energy Rev. 71(2016), 426–434.
[5] Sidik N.A.C., Adamu I.M., Jamil M.M., Kefayati G.H.R., Mamat R., Najafi G.: Recent progress on hybrid nanofluids in heat transfer applications: a comprehensive review. Int. Commun. Heat Mass 78(2016), 68–79.
[6] Nabil M.F., Azmi W.H., Hamid K.A., Zawawi N.N.M., Priyandoko G., Mamat R.: Thermo-physical properties of hybrid nanofluids and hybrid nanolubricants: a comprehensive review on performance. Int. Commun. Heat Mass 83(2017), 30–39.
[7] Hamzah M.H., Sidik N.A.C, Ken T.L., Mamat R., Najafi G.: Factors affecting the performance of hybrid nanofluids: a comprehensive review. Int. J. Heat Mass Tran. 115(2017), 12, 630–46.
[8] Khodadadi H., Aghakhani S., Majd H., Kalbasi R., Wongwises S., Afrand M.: A comprehensive review on rheological behavior of mono and hybrid nanofluids: effective parameters and predictive correlations. Int. J. Heat Mass Tran. 127(2018), B, 997–1012.
[9] Kumar D.D., Arasu A.V.: A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids. Renew. Sust. Energ. Rev. 81(2018), 1669–89.
[10] Sidik N.A.C., Jamil M.M., Japar W.M., Adamu I.M.: A review on preparation methods, stability and applications of hybrid nanofluids. Renew. Sust. Energ. Rev. 80 (2017), 1112–1122.
[11] Madhesh D., Kalaiselvam S.: Experimental analysis of hybrid nanofluid as a coolant. Procedia Eng. 97(2014), 1667–1675.
[12] Suresh S., Venkitaraj K.P, Selvakumar P., Chandrasekar M.: Synthesis of Al2O3—Cu/water hybrid nanofluids using two step method and its thermophysical properties. Colloids Surface A Physicochem. Eng. Asp. 388(2011), 41–48.
[13] Jana S., Khojin A.S.,.Zhong W.H: Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim. Acta 462(2007), 1–2, 45–55.
[14] Abbasi S.M., Nemati A., Rashidi A., Arzani K.: The effect of functionalization method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina. Ceram. Int. 39(2013), 3885–3891.
[15] Nine M.J., Munkhbayar B., Rahman M.S., Chung H., Jeong H.: Highly productive synthesis process of well dispersed Cu2O and Cu/Cu2O nanoparticles and its thermal characterization. Mater. Chem. Phys. 141(2013), 636–642.
[16] Chen L.F., Cheng M., Yang D.J., Yang L.: Enhanced thermal conductivity of nanofluid by synergistic effect of multi-walled carbon nanotubes and Fe2O3 nanoparticles. Appl. Mech. Mater. 548–549(2014), 118–123.
[17] Sundar L.S., Singh M.K., Sousa A.C.M.: Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int. Commun. Heat Mass 52(2014), 73–83.
[18] Baby T.T., Ramaprabhu S.: Surfactant free magnetic nanofluids based on coreshell type nanoparticle decorated multiwalled carbon nanotubes. J Appl. Phys. 110(2011), 064325–31.
[19] Esfe M.H., Abbasian A.A., Rezaie M., Yan W.M., Karimipour A.: Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int. Commun. Heat Mass 66(2015), 189–195.
[20] Das P.K.: A review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluids. J. Mol. Liq. 240(2017), 420–446.
[21] Soltani S., Kasaeian A., Sarrafha H. et al.: An experimental investigation of a hybrid photovoltaic/thermoelectric system with nanofluid application. Sol. Energy 155(2017) 1033–1043.
[22] Leong K.Y., Ahmad K.Z., Ong H.C., Ghazali M.J., Baharum A.: Synthesis and thermal conductivity characteristic of hybrid nanofluids — A review. Renew. Sust. Energ. Rev. 75(2017), 868–878.
[23] Nimmagadda R., Venkatasubbaiah K.: Conjugate heat transfer analysis of microchannel using novel hybrid nanofluids (Al2O3 + Ag/Water). Eur. J. Mech. B. Fluids 52 (2015), 19–27.
[24] Sajid M.U., Ali H.M.: Thermal conductivity of hybrid nanofluids: a critical review. Int. J. Heat Mass Tran. 26 (2018), 211–234.
[25] Allahyar H.R., Hormozi F., Zarenezhad B.: Experimental investigation on the thermal performance of a coiled heat exchanger using a new hybrid nanofluid. Exp. Therm. Fluid Sci. 76 (2016), 324–329.
[26] Olatomide G.F., Adebimpe A.A., Ayodeji O.S., David O.O., Johnson A.O., Francis I.I., Fatai A.B.: Numerical investigation and sensitivity analysis of turbulent heat transfer and pressure drop ofAl2O3/H2O nanofluid in straight pipe using response surface methodology. Arch. Thermodyn. 41(2020), 1, 3–30
[27] Sarkar J., Ghosh P., Adil A.: A review on hybrid nanofluids: recent research, development and applications. Renew. Sust. Energ. Rev. 43 (2015), 164–177.
[28] Moghadassi A., Ghomi E., Parvizian F.: A numerical study of water based Al2O3 and Al2O3–Cu hybrid nanofluid effect on forced convective heat transfer. Int. J. Therm. Sci. 92 (2015), 50–57.
[29] Esfe M.H., Rostamian S.H., Alirezaie A.: An applicable study on the thermal conductivity of SWCNT-MgO hybrid nanofluid and price-performance analysis for energy management. Appl. Therm. Eng. 111(2016), 1202–1210.
[30] Suresh S., Venkitaraj K.P., Selvakumar P. et al.: Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer. Exp. Therm. Fluid Sci. 38 (2012), 54–60.
[31] Esfe M.H., Esfandeh S., Saedodin S. et al.: Experimental evaluation, sensitivity analyzation and ANN modeling of thermal conductivity of ZnO-MWCNT/EG-water hybrid nanofluid for engineering applications. Appl. Therm. Eng. 125 (2017), 673– 685.
[32] Munkhbayar B., Tanshen M.R., Jeoun J. et al.: Surfactant-free dispersion of silver nanoparticles into MWCNT-aqueous nanofluids prepared by one-step technique and their thermal characteristics. Ceram. Int. 39 (2013), 6, 6415–6425.
[33] Minea A.A.: Pumping power and heat transfer efficiency evaluation on Al2O3, TiO2 and SiO2 single and hybrid water-based nanofluids for energy application. J. Therm. Anal. Calorim. 139 (2020), 2, 1171–1181.
[34] Manninen M., Veikko T., Sirpa K.: On the mixture model for multiphase flow. VTT, Espoo 1996, 3–67.
[35] Schiller L., Naumann Z.: A Drag Coefficient Correlation. Zeitschrift des Vereins Deutscher Ingenieure 77 (1935), 318–320.
[36] Sagot B., Antonini G., Christgen A., Buron F.: Jet impingement heat transfer on a flat plate at a constant wall temperature. Int. J. Therm. Sci. 47 (2008), 12, 1610– 1619.
[37] Menter F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(1994), 8, 1598–1605.
[38] Krieger I.M.,. Dougherty T.J.: A mechanism for non-Newtonian flow in suspension of 528 rigid spheres. J. Trans. Soc. Rheol. 3(1956), 37–152
[39] Maxwell J.C.: A Treastise on Electricity and Magnetism (2nd Edn.). Oxford Univer. Press, Cambridge 1881.
[40] ANSYS Inc. ANSYS Fluent 15.0 UDF Manual, Canonsburg, PA: ANSYS Inc, 2013.
[41] Gherasim I., Roy G., Nguyen, C.T., Vo-Ngoc, D.: Heat transfer enhancement and pumping power in confined radial flows using nanoparticle suspensions (nanofluids). Int. J. Therm. Sci. 50(2011), 3, 369–377.
[42] Maradiya C., Vadher J., Agarwal R.: The heat transfer enhancement techniques and their Thermal Performance Factor. Beni-Suef Uni. J. Basic Appl. Sci. 7(2018), 1, 1–21.
Go to article

Authors and Affiliations

Abanti Datta
1
Pabitra Halder
1

  1. Indian Institute of Engineering Science and Technology, Shibpur PO: Botanic Garden, Howrah-711103, West Bengal, India
Download PDF Download RIS Download Bibtex

Abstract

Thermal augmentation in flat tube of car radiator using different nanofluids has been performed more often, but use of artificial roughness has been seldom done. Artificial roughness in the form of dimple is used in the present research work. Present study shows the impact of dimple shaped roughness and nanofluid (Al2O3/pure water) on the performance of car radiator. The pitch of dimples is kept at 15 mm (constant) for all the studies performed. The Reynolds number of the flow is selected in the turbulent regime ranging from 9350 to 23 000 and the concentration of the nanofluid is taken in the range of 0.1–1%. It has been found that the heat transfer rate has improved significantly in dimpled radiator tube on the expense of pumping power. Furthermore, the heat transfer rate also increases with increase in nanoparticle concentration from 0.1% to 1.0%. The highest heat transfer enhancement of 79% is observed at Reynolds number 9350, while least enhancement of 18% is observed for Reynolds number of 23 000.
Go to article

Authors and Affiliations

Robin Kumar Thapa
1
Vijay Singh Bisht
1
Prabhakar Bhandari
2
Kamal Singh Rawat
3

  1. Uttarakhand Technical University, Faculty of Technology, Chakrata Road, Dehradun-248007, Uttarakhand, India
  2. K.R. Mangalam University, Mechanical Engineering Department, Sohna Road, Gurgram-122103, Haryana, India
  3. MIET, Mechanical Engineering Department, Meerut-250005, Uttar Pradesh, India
Download PDF Download RIS Download Bibtex

Abstract

The characteristic of nano sized particles mass flux conditions are engaged in this investigation. Here we assume that the nano sized particle flux is zero and the nano sized particle fraction arranged itself on the boundary layer. With this convincing and revised relation, the features of Buongiorno relation on three-dimensional flow of Carreau fluid can be applied in a more efficient way. The governing partial differential equations of continuity, momentum, energy and concentration equations which are transmitted into set of pair of nonlinear ordinary differential equations utilizing similar transformations. The numeric solutions are acquired by engaging the bvp4c scheme, which is a finite-difference code for solving boundary value problems. A parametric study is accomplished to demonstrate the impact of Prandtl number,Weissenberg numbers, radiation parameter, chemical reaction parameter, thermophoresis parameter, Brownian motion parameter and Lewis number on the fluid velocity, temperature and concentration profiles as well skin friction coefficient, Nusselt number and Sherwood number within the boundary layer. From this we find the way in which magnetic parameter contributes to the increase in local skin fraction, and the decrease in the Nusselt and Sherwood numbers in these cases. The effects of the velocity temperature and concentration profile are obtained and presented graphically.

Go to article

Authors and Affiliations

B. Madhusudhana Rao
Degavath Gopal
Naikoti Kishan
Saad Ahmed
Putta Durga Prasad
Download PDF Download RIS Download Bibtex

Abstract

The primary objective is to perform a numerical synthesis of a Williamson fluid that has nanoparticles added to it and is directed toward a vertical cone in a uniform transverse magnetic field, under heat and mass transport, suction and injection, and convective boundary conditions. For this particular fluid flow, by utilising similarity transformations, the partial differential equations are transformed into ordinary differential equations. Calculating these kinds of equations with their suitable bounds requires the Runge–Kutta technique in combining a shooting strategy. The functions of a vast number of parameters are graphically represented and assessed on flow field profiles. The results show the local skin friction, local Nusselt number, and local Sherwood number and the changing values of the flow constraints. Finally, the results are compared to those from the previously published works and found to be in good agreement.
Go to article

Authors and Affiliations

Manthri Sathyanarayana
1
Tamtam Ramakrishna Goud
2

  1. Osmania University, Department of Mathematics, University College of Science, Hyderabad – 500007, Telangana Sate, India
  2. Osmania University, Department of Mathematics, University College of Science, Saifabad, Hyderabad – 500004, Telangana Sate, India
Download PDF Download RIS Download Bibtex

Abstract

The presence of more than one solute diffused in fluid mixtures is very often requested for discussing the natural phenomena such as transportation of contaminants, underground water, acid rain and so on. In the paper, the effect of nonlinear thermal radiation on triple diffusive convective boundary layer flow of Casson nanofluid along a horizontal plate is theoretically investigated. Similarity transformations are utilized to reduce the governing partial differential equations into a set of nonlinear ordinary differential equations. The reduced equations are numerically solved using Runge-Kutta-Fehlberg fourth-fifth order method along with shooting technique. The impact of several existing physical parameters on velocity, temperature, solutal and nanofluid concentration profiles are analyzed through graphs and tables in detail. It is found that, modified Dufour parameter and Dufour solutal Lewis number enhances the temperature and solutal concentration profiles respectively.

Go to article

Authors and Affiliations

Manjappa Archana
Bijjanal Jayanna Gireesha
Ballajja Chandrappa Prasannakumara
Download PDF Download RIS Download Bibtex

Abstract

An experimental investigation was performed on the thermal performance and heat transfer characteristics of acetone/zirconia nanofluid in a straight (rod) gravity-assisted heat pipe. The heat pipe was fabricated from copper with a diameter of 15 mm, evaporator-condenser length of 100 mm and adiabatic length of 50 mm. The zirconia-acetone nanofluid was prepared at 0.05–0.15% wt. Influence of heat flux applied to the evaporator, filling ratio, tilt angle and mass concentration of nanofluid on the heat transfer coefficient of heat pipe was investigated. Results showed that the use of nanofluid increases the heat transfer coefficient while decreasing the thermal resistance of the heat pipe. However, for the filling ratio and tilt angle values, the heat transfer coefficient initially increases with an increase in both. However, from a specific value, which was 0.65 for filling ratio and 60–65 deg for tilt angle, the heat transfer coefficient was suppressed. This was attributed to the limitation in the internal space of the heat pipe and also the accumulation of working fluid inside the bottom of the heat pipe due to the large tilt angle. Overall, zirconia-acetone showed a great potential to increase the thermal performance of the heat pipe.

Go to article

Authors and Affiliations

Amin Abdolhossein Zadeh
Shima Nakhjavani
Download PDF Download RIS Download Bibtex

Abstract

The pool boiling characteristics of dilute dispersions of alumina, zirconia and silica nanoparticles in water were studied. These dispersions are known as nanofluids. Consistently with other nanofluid studies, it was found that a significant enhancement in Critical Heat Flux (CHF) can be achieved at modest nanoparticle concentrations (<0.1% by volume). Buildup of a porous layer of nanoparticles on the heater surface occurred during nucleate boiling. This layer significantly improves the surface wettability, as shown by a reduction of the static contact angle on the nanofluid-boiled surfaces compared with the pure-water-boiled surfaces. CHF theories support the nexus between CHF enhancement and surface wettability changes. This represents a first important step towards identification of a plausible mechanism for boiling CHF enhancement in nanofluids.

Go to article

Authors and Affiliations

S.J. Kim
I.C. Bang
J. Buongiorno
L.W. Hu
Download PDF Download RIS Download Bibtex

Abstract

Cooling is indispensable for maintaining the desired performance and reliability over a very huge variety of products like electronic devices, computer, automobiles, high power laser system etc. Apart from the heat load amplification and heat fluxes caused by many industrial products, cooling is one of the major technical challenges encountered by the industries like manufacturing sectors, transportation, microelectronics, etc. Normally water, ethylene glycol and oil are being used as the fluid to carry away the heat in these devices. The development of nanofluid generally shows a better heat transfer characteristics than the water. This research work summarizes the experimental study of the forced convective heat transfer and flow characteristics of a nanofluid consisting of water and 1% Al2O3(volume concentration) nanoparticle flowing in a parallel flow, counter flow and shell and tube heat exchanger under laminar flow conditions. The Al2O3 nanoparticles of about 50 nm diameter are used in this work. Three different mass flow rates have been selected and the experiments have been conducted and their results are reported. This result portrays that the overall heat transfer coefficient and dimensionless Nusselt number of nanofluid is slightly higher than that of the base liquid at same mass flow rate at same inlet temperature. From the experimental result it is clear that the overall heat transfer coefficient of the nanofluid increases with an increase in the mass flow rate. It shows that whenever mass flow rate increases, the overall heat transfer coefficient along with Nusselt number eventually increases irrespective of flow direction. It was also found that during the increase in mass flow rate LMTD value ultimately decreases irrespective of flow direction. However, shell and tube heat exchanger provides better heat transfer characteristics than parallel and counter flow heat exchanger due to multi pass flow of nanofluid. The overall heat transfer coefficient, Nusselt number and logarithmic mean temperature difference of the water and Al2O3/water nanofluid are also studied and the results are plotted graphically.

Go to article

Bibliography

[1] A. Valera-Medina, A. Giles, D. Pugh, S. Morris, M. Pohl, and A. Ortwein. Investigation of combustion of emulated biogas in a gas turbine test rig. Journal of Thermal Science, 27:331–340, 2018. doi: 10.1007/s11630-018-1024-1.
[2] K. Tanaka and I. Ushiyama. Thermodynamic performance analysis of gas turbine power plants with intercooler: 1st report, Theory of intercooling and performance of intercooling type gas turbine. Bulletin of JSME, 13(64):1210–1231, 1970. doi: 10.1299/jsme1958.13.1210.
[3] H.M. Kwon, T.S. Kim, J.L. Sohn, and D.W. Kang. Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller. Energy, 163:1050–1061, 2018. doi: 10.1016/j.energy.2018.08.191.
[4] A.T. Baheta and S.I.-U.-H. Gilani. The effect of ambient temperature on a gas turbine performance in part load operation. AIP Conference Proceedings, 1440:889–893, 2012. doi: 10.1063/1.4704300.
[5] F.R. Pance Arrieta and E.E. Silva Lora. Influence of ambient temperature on combined-cycle power-plant performance. Applied Energy, 80(3):261–272, 2005. doi: 10.1016/j.apenergy.2004.04.007.
[6] M. Ameri and P. Ahmadi. The study of ambient temperature effects on exergy losses of a heat recovery steam generator. In: Cen, K., Chi, Y., Wang, F. (eds) Challenges of Power Engineering and Environment. Springer, Berlin, Heidelberg, 2007. doi: 10.1007/978-3-540-76694-0_9.
[7] M.A.A. Alfellag: Parametric investigation of a modified gas turbine power plant. Thermal Science and Engineering Progress, 3:141–149, 2017. doi: 10.1016/j.tsep.2017.07.004.
[8] J.H. Horlock and W.A. Woods. Determination of the optimum performance of gas turbines. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214:243–255, 2000. doi: 10.1243/0954406001522930.
[9] L. Battisti, R. Fedrizzi, and G. Cerri. Novel technology for gas turbine blade effusion cooling. In: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 3: Heat Transfer, Parts A and B. pages 491–501. Barcelona, Spain. May 8–11, 2006. doi: 10.1115/GT2006-90516.
[10] F.J. Wang and J.S. Chiou. Integration of steam injection and inlet air cooling for a gas turbine generation system. Energy Conversion and Management, 45(1):15–26, 2004. doi: 10.1016/S0196-8904 (03)00125-0.
[11] Z. Wang. 1.23 Energy and air pollution. In I. Dincer (ed.): Comprehensive Energy Systems, pp. 909–949. Elsevier, 2018. doi: 10.1016/B978-0-12-809597-3.00127-9.
[12] Z. Khorshidi, N.H. Florin, M.T. Ho, and D.E. Wiley. Techno-economic evaluation of co-firing biomass gas with natural gas in existing NGCC plants with and without CO$_2$ capture. International Journal of Greenhouse Gas Control, 49:343–363, 2016. doi: 10.1016/j.ijggc.2016.03.007.
[13] K. Mohammadi, M. Saghafifar, and J.G. McGowan. Thermo-economic evaluation of modifications to a gas power plant with an air bottoming combined cycle. Energy Conversion and Management, 172:619–644, 2018. doi: 10.1016/j.enconman.2018.07.038.
[14] S. Mohtaram, J. Lin, W. Chen, and M.A. Nikbakht. Evaluating the effect of ammonia-water dilution pressure and its density on thermodynamic performance of combined cycles by the energy-exergy analysis approach. Mechanika, 23(2):18110, 2017. doi: 10.5755/j01.mech.23.2.18110.
[15] M. Maheshwari and O. Singh. Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine. Energy, 168:1217–1236, 2019. doi: 10.1016/j.energy.2018.12.008.
[16] A. Khaliq and S.C. Kaushik. Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Applied Energy, 78(2):179–197, 2004. doi: 10.1016/j.apenergy.2003.08.002.
[17] M. Aliyu, A.B. AlQudaihi, S.A.M. Said, and M.A. Habib. Energy, exergy and parametric analysis of a combined cycle power plant. Thermal Science and Engineering Progress. 15:100450, 2020. doi: 10.1016/j.tsep.2019.100450.
[18] M.N. Khan, T.A. Alkanhal, J. Majdoubi, and I. Tlili. Performance enhancement of regenerative gas turbine: air bottoming combined cycle using bypass valve and heat exchanger—energy and exergy analysis. Journal of Thermal Analysis and Calorimetry. 144:821–834, 2021. doi: 10.1007/s10973-020-09550-w.
[19] F. Rueda Martínez, A. Rueda Martínez, A. Toleda Velazquez, P. Quinto Diez, G. Tolentino Eslava, and J. Abugaber Francis. Evaluation of the gas turbine inlet temperature with relation to the excess air. Energy and Power Engineering, 3(4):517–524, 2011. doi: 10.4236/epe.2011.34063.
[20] A.K. Mohapatra and R. Sanjay. Exergetic evaluation of gas-turbine based combined cycle system with vapor absorption inlet cooling. Applied Thermal Engineering, 136:431–443, 2018. doi: 10.1016/j.applthermaleng.2018.03.023.
[21] A.A. Alsairafi. Effects of ambient conditions on the thermodynamic performance of hybrid nuclear-combined cycle power plant. International Journal of Energy Research, 37(3):211–227, 2013. doi: 10.1002/er.1901.
[22] A.K. Tiwari, M.M. Hasan, and M. Islam. Effect of ambient temperature on the performance of a combined cycle power plant. Transactions of the Canadian Society for Mechanical Engineering, 37(4):1177–1188, 2013. doi: 10.1139/tcsme-2013-0099.
[23] T.K. Ibrahim, M.M. Rahman, and A.N. Abdalla. Gas turbine configuration for improving the performance of combined cycle power plant. Procedia Engineering, 15:4216–4223, 2011. doi: 10.1016/j.proeng.2011.08.791.
[24] M.N. Khan and I. Tlili. New advancement of high performance for a combined cycle power plant: Thermodynamic analysis. Case Studies in Thermal Engineering. 12:166–175, 2018. doi: 10.1016/j.csite.2018.04.001.
[25] S.Y. Ebaid and Q.Z. Al-hamdan. Thermodynamic analysis of different configurations of combined cycle power plants. Mechanical Engineering Research. 5(2):89–113, 2015. doi: 10.5539/mer.v5n2p89.
[26] R. Teflissi and A. Ataei. Effect of temperature and gas flow on the efficiency of an air bottoming cycle. Journal of Renewable and Sustainable Energy, 5(2):021409, 2013. doi: 10.1063/1.4798486.
[27] A.A. Bazmi, G. Zahedi, and H. Hashim. Design of decentralized biopower generation and distribution system for developing countries. Journal of Cleaner Production, 86:209–220, 2015. doi: 10.1016/j.jclepro.2014.08.084.
[28] A.I. Chatzimouratidis and P.A. Pilavachi. Decision support systems for power plants impact on the living standard. Energy Conversion and Management, 64:182–198, 2012. doi: 10.1016/j.enconman.2012.05.006.
[29] T.K. Ibrahim, F. Basrawi, O.I. Awad, A.N. Abdullah, G. Najafi, R. Mamat, and F.Y. Hagos. Thermal performance of gas turbine power plant based on exergy analysis. Applied Thermal Engineering, 115:977–985, 2017. doi: 10.1016/j.applthermaleng.2017.01.032.
[30] M. Ghazikhani, I. Khazaee, and E. Abdekhodaie. Exergy analysis of gas turbine with air bottoming cycle. Energy, 72:599–607, 2014. doi: 10.1016/j.energy.2014.05.085.
[31] M.N. Khan, I. Tlili, and W.A. Khan. thermodynamic optimization of new combined gas/steam power cycles with HRSG and heat exchanger. Arabian Journal for Science and Engineering, 42:4547–4558, 2017. doi: 10.1007/s13369-017-2549-4.
[32] N. Abdelhafidi, İ.H. Yılmaz, and N.E.I. Bachari. An innovative dynamic model for an integrated solar combined cycle power plant under off-design conditions. Energy Conversion and Management, 220:113066, 2020. doi: 10.1016/j.enconman.2020.113066.
[33] T.K. Ibrahim, M.K. Mohammed, O.I. Awad, M.M. Rahman, G. Najafi, F. Basrawi, A.N. Abd Alla, and R. Mamat. The optimum performance of the combined cycle power plant: A comprehensive review. Renewable and Sustainable Energy Reviews, 79:459–474, 2017. doi: 10.1016/j.rser.2017.05.060.
[34] M.N. Khan. Energy and exergy analyses of regenerative gas turbine air-bottoming combined cycle: optimum performance. Arabian Journal for Science and Engineering, 45:5895–5905, 2020. doi: 10.1007/s13369-020-04600-9.
[35] A.M. Alklaibi, M.N. Khan, and W.A. Khan. Thermodynamic analysis of gas turbine with air bottoming cycle. Energy, 107:603–611, 2016. doi: 10.1016/j.energy.2016.04.055.
[36] M. Ghazikhani, M. Passandideh-Fard, and M. Mousavi. Two new high-performance cycles for gas turbine with air bottoming. Energy, 36(1):294–304, 2011. doi: 10.1016/j.energy.2010.10.040.
[37] M.N. Khan and I. Tlili. Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: Energy and exergy analysis. Energy Reports, 4:497–506, 2018. doi: 10.1016/j.egyr.2018.07.007.
[38] M.N. Khan and I. Tlili. Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation. Journal of Cleaner Production, 192:443–452, 2018. doi: 10.1016/j.jclepro.2018.04.272.
[39] M. Korobitsyn. Industrial applications of the air bottoming cycle. Energy Conversion and Management, 43(9-12):1311–1322, 2002. doi: 10.1016/S0196-8904(02)00017-1.
[40] T.K. Ibrahim and M.M. Rahman. optimum performance improvements of the combined cycle based on an intercooler–reheated gas turbine. Journal of Energy Resources Technology, 137(6):061601, 2015. doi: 10.1115/1.4030447.
Go to article

Authors and Affiliations

R. Dharmalingam
K.K. Sivagnanaprabhu
J. Yogaraja
S. Gunasekaran
R. Mohan

Download PDF Download RIS Download Bibtex

Abstract

This study presents the behavior of a single wall carbon nanotube (SWCNT)/water nanofluid for convective laminar flow inside a straight circular pipe heated by a constant heat flux. Five volume fractions of SWCNT were used to investigate their effect on the heat transfer coefficient, Nusselt number, temperature distribution and velocity field in comparison with pure water flow. One model for each property was tested to calculate the effective thermal conductivity, effective dynamic viscosity, and effective specific heat of the SWCNT/water mixture. The models were extracted from experimental data of a previous work. The outcomes indicate that the rheological behavior of SWCNT introduces a special effect on the SWCNT/water properties, which vary with SWCNT volume fraction. The results show an improvement in the heat transfer coefficient with increasing volume fraction of nanoparticles. The velocity of SWCNT/water nanofluid increased by adding SWCNT nanoparticles, and the maximum increase was registered at 0.05% SWCNT volume fraction. The mixture temperature is increased with the axial distance of the pipe but a reduction in temperature distribution is observed with the increasing SWCNT volume fraction, which reflects the effect of thermophysical properties of the mixture.
Go to article

Authors and Affiliations

Farqad Rasheed Saeed
1
Marwah A. Jasim
2
Natheer B. Mahmood
3
Zahraa M. Jaffar
4

  1. Ministry of Science Technology, Directorate of Materials Research, 55509 Al-Jadriya, Iraq
  2. University of Baghdad, College of Engineering, Al-Jadriya,10074 Al-Jadriya, Iraq
  3. Ministry of Education, General Directorate of Baghdad Education, Karkh 2, 10072 Al-Jadriya, Iraq
  4. Al Nahrain University, College of Science, 10072 Al-Jadriya, Iraq
Download PDF Download RIS Download Bibtex

Abstract

The paper is a thermodynamics analysis of the removal of any inert gas from the tank using the vapors of any liquefied petroleum gas cargo (called cargo tank gassing-up operation). For this purpose, a thermodynamic model was created which considers two boundary cases of this process. The first is a ‘piston pushing’ of inert gas using liquefied petroleum gas vapour. The second case is complete mixing of both gases and removal the mixture from the tank to the atmosphere until desired concentration or amount of liquefied petroleum gas cargo in the tank is reached. Calculations make it possible to determine the amount of a gas used to complete the operation and its loss incurred as a result of total mixing of both gases.
Go to article

Authors and Affiliations

Agnieszka Wieczorek
1

  1. Gdynia Maritime University, Morska 81–87, 81-225 Gdynia, Poland
Download PDF Download RIS Download Bibtex

Abstract

The work presents a numerical investigation for the convective heat transfer of nanofluids under a laminar flow inside a straight tube. Different models applied to investigate the improvement in convective heat transfer, and Nusselt number in comparison with the experimental data. The impact of temperature dependence, temperature independence, and Brownian motion, was studied through the used models. In addition, temperature distribution and velocity field discussed through the presented models. Various concentrations of nanoparticles are used to explore the results of each equation with more precision. It was shown that achieving the solution through specific models could provide better consistency between obtained results and experimental data than the others.
Go to article

Bibliography

[1] Mirmasoumi S., Behzadmehr A.: Numerical study of laminar mixed convection of a nanofluid in a horizontal tube using two-phase mixture model. Appl. Therm. Eng. 28(2008), 7, 717–727.
[2] Bianco V., Manca O., Nardini S.: Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube. Int. J. Therm. Sci. 50(2011), 3, 341–349.
[3] Masuda H., Ebata A., Teramae K.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles. Netsu Bussei 7(1993), 4, 227–233. 94 F.R. Saeed and M.A. Al-Dulaimi
[4] Choi S.U.S., Eastman J.A.: Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab., ANL/MSD/CP-84938, CONF-951135-29, 1995.
[5] Daungthongsuk W., Wongwises S.: A critical review of convective heat transfer of nanofluids. Renew. Sustain. Energy Rev. 11(2007), 5, 797–817.
[6] Godson L., Raja B., Lal D.M., Wongwises S.: Enhancement of heat transfer using nanofluids – an overview. Renew. Sustain. Energy Rev 14(2010), 2, 629–641.
[7] Pak B.C., Cho Y.I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transfer 11(1998), 2, 151–170.
[8] Eastman J.A.: Novel thermal properties of nanostructured materials. Argonne National Lab., ANL/MSD/CP-96711, 1999.
[9] Wen D., Ding Y.: Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int. J. Heat Mass Tran. 47(2004), 24, 5181–5188.
[10] Vajjha R.S., Das D.K.: Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int. J. Heat Mass Tran. 52(2009), 21-22, 4675–4682.
[11] Ebrahimnia-Bajestan E., Niazmand H., Duangthongsuk W., Wongwises S.: Numerical investigation of effective parameters in convective heat transfer of nanofluids flowing under a laminar flow regime. Int. J. Heat Mass Tran. 54(2011), 19-20, 4376–4388.
[12] Lee S., Choi S.S., Li S.A., Eastman J.A.: Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat Transf. 121(1999), 2, 280–289.
[13] Wang X., Xu X., Choi S.U.S.: Thermal conductivity of nanoparticle-fluid mixture. J. Thermophys. Heat Tr. 13(1999), 4, 474–480.
[14] Maiga S.E.B., Palm S.J., Nguyen C.T., Roy G., Galanis N.: Heat transfer enhancement by using nanofluids in forced convection flows. Int. J. Heat Fluid Fl. 26(2005), 4, 530–546.
[15] Corcione M.: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energ. Convers. Manage. 52(2011), 1, 789–793.
[16] Onyiriuka E.J., Obanor A.I., Mahdavi M., Ewim D.R.E.: Evaluation of singlephase, discrete, mixture and combined model of discrete and mixture phases in predicting nanofluid heat transfer characteristics for laminar and turbulent flow regimes. Adv. Powder Technol. 29(2018), 11, 2644–2657.
[17] Bianco V., Chiacchio F., Manca O., Nardini S.: Numerical investigation of nanofluids forced convection in circular tubes. Appl. Therm. Eng. 29(2009), 17–18, 3632–3642.
[18] Moraveji M.K., Ardehali R.M.: CFD modeling (comparing single and two-phase approaches) on thermal performance of Al2O3/water nanofluid in mini-channel heat sink. Int. Commun. Heat Mass 44(2013), 157–164.
[19] Vanaki S.M., Ganesan P., Mohammed H.A.: Numerical study of convective heat transfer of nanofluids: a review. Renew. Sustain. Energy Rev. 54(2016), 1212–1239.
[20] He Y., Men Y., Zhao Y., Lu H., Ding Y.: Numerical investigation into the convective heat transfer of TiO2 nanofluids flowing through a straight tube under the laminar flow conditions. Appl. Therm. Eng. 29(2009), 10, 1965–1972.
[21] Khanafer K., Vafai K.: A critical synthesis of thermophysical characteristics of nanofluids. Int. J. Heat Mass Tran. 54(2011), 19-20, 4410–4428.
[22] Koo J., Kleinstreuer C.: A new thermal conductivity model for nanofluids. J. Nanopart. Res. 6(2004), 6, 577–588.
[23] Kim D., Kwon Y., Cho Y., Li C., Cheong S., Hwang Y., Moon S.: Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Curr. Appl. Phys. 9(2009), 2, 119–123.
[24] Mcnab G.S., Meisen A.: Thermophoresis in liquids. J. Colloid Inter. Sci. 44(1973), 2, 339–346.
[25] Shah R.K.: Laminar Flow Forced Convection in Ducts. Academic Press, A.L. London, New York, 1978. p.128.
[26] https://www.comsol.com/release/5.4 (accessed: 20 May 2020).
Go to article

Authors and Affiliations

Farqad Rasheed Saeed
1
Marwah Abdulkareem Al-Dulaimi

  1. Ministry of Science and Technology, Directorate of Materials Research, 55509 Al-Jadriya, Iraq
Download PDF Download RIS Download Bibtex

Abstract

This work investigates the effect of Reynolds number, nanoparticle volume ratio, nanoparticle size and entrance temperature on the rate of entropy generation in Al2O3 /H2O nanofluid flowing through a pipe in the turbulent regime. The Reynolds average Navier-Stokes and energy equations were solved using the standard k-ε turbulent model and the central composite method was used for the design of experiment. Based on the number of variables and levels, the condition of 30 runs was defined and 30 simulations were run. The result of the regression model obtained showed that all the input variables and some interaction between the variables are statistically significant to the entropy production. Furthermore, the sensitivity analysis result shows that the Reynolds number, the nanoparticle volume ratio and the entrance temperature have negative sensitivity while the nanoparticle size has positive sensitivity.

Go to article

Authors and Affiliations

O.G. Fadodun
B.A. Olokuntoye
A.O. Salau
Adebimpe A. Amosun
Download PDF Download RIS Download Bibtex

Abstract

In this paper, investigation of the effect of Reynolds number, nanoparticle volume ratio, nanoparticle diameter and entrance temperature on the convective heat transfer and pressure drop of Al2O3/H2O nanofluid in turbulent flow through a straight pipe was carried out. The study employed a computational fluid dynamic approach using single-phase model and response surface methodology for the design of experiment. The Reynolds average Navier-Stokes equations and energy equation were solved using k-" turbulent model. The central composite design method was used for the response-surface-methodology. Based on the number of variables and levels, the condition of 30 runs was defined and 30 simulations were performed. New models to evaluate the mean Nusselt number and pressure drop were obtained. Also, the result showed that all the four input variables are statistically significant to the pressure drop while three out of them are significant to the Nusslet number. Furthermore, sensitivity analysis carried out showed that the Reynolds number and volume fraction have a positive sensitivity to both the mean Nusselt number, and pressure drop, while the entrance temperature has negative sensitivities to both.

Go to article

Authors and Affiliations

Olatomide G. Fadodun
Adebimpe A. Amosun
Ayodeji O. Salau
David O. Olaloye
Johnson A. Ogundeji
Francis I. Ibitoye
Fatai A. Balogun
Download PDF Download RIS Download Bibtex

Abstract

Heat transfer study from the heated square cylinder at a different orientation angle to the stream of nanofluids has been investigated numerically. CuO-based nanofluids were used to elucidate the significant effect of parameters: Reynolds number (1–40), nanoparticle volume fraction (0.00–0.05), the diameter of the NPs (30–100 mn) and the orientation of square cylinder (0–90°). The numerical results were expressed in terms of isotherm contours and average Nusselt number to explain the effect of relevant parameters. Over the range of conditions, the separation of the boundary layers of nanofluids increased with the size of the NPs as compared to pure water. NPs volume fraction and its size had a significant effect on heat transfer rate. The square cylinder of orientation angle (45°) gained a more efficient heat transfer cylinder than other orientation angles. Finally, the correlations were developed for the average Nusselt number in terms of the relevant parameters for 45° orientation of the cylinder for new applications.
Go to article

Authors and Affiliations

Jaspinder Kaur
1
Jatinder Kumar Ratan
1
Anurag Kumar Tiwari
1

  1. Dr B.R. Ambedkar National Institute of Technology Jalandar Punjab, Chemical Engineering Department, Pin code 144011, India
Download PDF Download RIS Download Bibtex

Abstract

Mathematical analysis for 3D Williamson nanofluid flow past a bi-directional stretched surface in Darcy-Forchheimer permeable media constitutes the focus of this study. The novelty of the proposed model is augmented by the addition of thermal and solutal stratification with chemical species and variable thermal conductivity. Calculations of the suggested model are conducted via the renowned homotopy analysis method (HAM). The results obtained are validated by comparing them in a limiting form with an already published article. Excellent harmony is achieved in this regard. Graphical structures, depicting impacts of assorted arising parameters versus the profiles involved are also provided. It is noticed that the velocity profile is a dwindling function of the Williamson parameter and Hartmann number. It is also stated that the Cattaneo-Christov heat flux exhibits conventional Fourier and Fick’s laws behavior when both coefficients of thermal and concentration relaxations are zero.

Go to article

Authors and Affiliations

M. Ramzan
H. Gul
M. Zahri
Download PDF Download RIS Download Bibtex

Abstract

In this experimental investigation, the critical heat flux (CHF) of aqua-based multiwalled carbon nanotube (MWCNT) nanofluids at three different volumetric concentrations 0.2%, 0.6%, and 0.8% were prepared, and the test results were compared with deionized water. Different characterization techniques, including X-ray diffraction, scanning electron microscopy and Fourier transform infrared, were used to estimate the size, surface morphology, agglomeration size and chemical nature of MWCNT. The thermal conductivity and viscosity of the MWCNT at three different volumetric concentrations was measured at a different temperature, and results were compared with deionized water. Although, MWCNT-deionized water nanofluid showed superior performance in heat transfer coefficient as compared to the base fluid. However, the results proved that the critical heat flux is increased with an increase in concentrations of nanofluids.

Go to article

Authors and Affiliations

D. Vasudevan
D. Senthil Kumar
A. Murugesan
C. Vijayakumar

This page uses 'cookies'. Learn more