Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the recent years structural health monitoring (SHM) has gathered spectacular attention in civil engineering applications. Application of such composites enable to improve the safety and performance of structures. Recent advances in nanotechnology have led to development of new family of sensors – self-sensing materials. These materials enable to create the so-called “smart concrete” exhibiting self-sensing ability. Application of selfsensing materials in cement-based materials enables to detect their own state of strain or stress reflected as a change in their electrical properties. The variation of strain or stress is associated with the variation in material’s electrical characteristics, such as resistance or impedance. Therefore, it is possible to efficiently detect and localize crack formation and propagation in selected concrete element. This review is devoted to present contemporary developments in application of nanomaterials in self-sensing cement-based composites and future directions in the field of smart structures.

Go to article

Authors and Affiliations

E. Horszczaruk
P. Sikora
P. Łukowski
Download PDF Download RIS Download Bibtex

Abstract

With the increase in use and application of carbon nanomaterials and the frequent presence of fluoroquinolones and tetracyclines antibiotics in the aquatic environment, their interactions have attracted extensive attention. In this study, adsorption of two antibiotics: oxytetracycline (OTC) and ciprofloxacin (CIP) by four carbon-based nanomaterials (graphene oxide, reduced graphene oxide, multiwalled carbon-nanotubes, oxidized multiwalled carbon-nanotubes) affected by pH was investigated. The experiment was performed in two steps: (i) adsorption of OTC and CIP at different pH values, (ii) adsorption isotherm studies of both antibiotics on four carbon-based nanomaterials. Both steps were conducted using the batch equilibration technique. The results showed that the adsorption of both antibiotics on studied adsorbents was highly pH-dependent. The highest adsorption was obtained at pH 7.0, implying the importance of the zwitterionic antibiotics forms to adsorption. Antibiotics adsorption isotherms at three given pH values followed the order of pH 7.0 > 1.0 > 11.0, which confirmed zwitterionic species of OTC and CIP as having the greatest ability to adsorb on carbonaceous nanomaterials. Electrostatic interaction, π-π EDA interaction, hydrophobic interaction for both antibiotics, and additionally hydrogen bond for CIP were possible mechanisms responsible for OTC and CIP adsorption onto studied nanomaterials. These results should be important to understand and assess the fate and interaction of carbon-based nanomaterials in the aquatic environment. This study can also be important for the use of carbon nanomaterials to remove antibiotics from the environment.
Go to article

Bibliography

  1. Ahmed, M.J. (2017). Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons: Review. Environ. Toxicol. Pharmacol. 50, 1-10. DOI:10.1016/j.etap.2017.01.004
  2. Carabineiro, S.A.C., Thavorn-amornsri, T., Pereira, M.F.R., Serp, P. & Figueiredo, J.L. (2012). Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin. Catalysis Today, 186(1), 29–34. DOI:10.1016/j.cattod.2011.08.020
  3. ECDC, 2018. European Centre for disease prevention and Control. An agency of the Europe-an Union. Country overview of antimicrobial consumption. http://www.ecdc. euro-pa.eu/en/activities/surveillance/esac-net/pages/index.aspx.
  4. Felis, E., Kalka, J., Sochacki, A., Kowalska, K., Bajkacz, S., Harnisz, M. & Korzeniewska, E. (2019). Antimicrobial pharmaceuticals in the aquatic environment - occurrence and en-vironmental implications. Europ J of Pharm, 172813. DOI:10.1016/j.ejphar.2019.172813
  5. Figueroa, R.A. & MacKay, A.A., (2005). Sorption of Oxytetracycline to Iron Oxides and Iron Oxide-Rich Soils. Environ. Sci. Technol, 39(17), 6664–6671. DOI:10.1021/es048044l
  6. Figueroa, R.A., Leonard, A. & MacKay, A.A. (2004). Modeling Tetracycline Antibiotic Sorp-tion to Clays. Environ. Sci. Technol., 38(2), 476–483. DOI:10.1021/es0342087
  7. Franz, M., Arafat, H.A. & Pinto, N.G. (2000). Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon. Carbon 38 1807–1819. DOI:10.1016/S0008-6223(00)00012-9
  8. Freundlich, H.M.F. (1906). Over the adsorption in solution. J Phys Chem 57, 385–347
  9. Gao, Y., Li, Y., Zhang, L., Huang, H., Hu, J., Shah, S.M. & Su, X. (2012). Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J. Coll. Inter. Sci., 368(1), 540–546. DOI:10.1016/j.jcis.2011.11.015
  10. Genç, N. & Dogan, E.C. (2013). Adsorption kinetics of the antibiotic ciprofloxacin on benton-ite, activated carbon, zeolite, and pumice. Desalin. Water Treat. 53, 785-793. DOI:10.1080/19443994.2013.842504
  11. Gnihotri, A.S., Rostam-Abadi, M. & Rood, M.J. (2004) Temporal changes in nitrogen adsorp-tion properties of single-walled carbon nanotubes, Carbon, 42, 2699–2710. DOI:10.1016/j.carbon.2004.06.016
  12. Golet, E.M., Xifra, I., Siegrist, H., Alder, A.C. & Giger, W. (2003). Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environ. Sci. Technol. 37, 3243–3249. DOI:10.1021/es0264448
  13. Hanna, N., Sun, P., Sun, Q., Li, X., Yang, X., Ji, X., Zoub, H., Ottosond, J., Nilssone, L.E., Berglunde, B., Dyara, O.J., Tamhankar, A.J. & Stålsby Lundborg, C. (2018). Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: its potential for resistance development and ecological and human risk. Environ. Int. 114, 131–142. DOI:10.1016/j.envint.2018.02.003
  14. Ji, L.C.W., Duan, L. & Zhu, D.Q. (2009). Mechanisms for strong adsorption of tetracycline to carbon nanotubes: A comparative study using activated carbon and graphite as adsor-bents. Environ. Sci. Technol. 43, 2322–2327. DOI:10.1021/es803268b
  15. Ji, L., Chen, W., Bi, J., Zheng, S., Xu, Z., Zhu, D. & Alvarez, P.J. (2010). Adsorption of tet-racycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry. Environ. Toxicol. Chem. 29, 2713-2719. DOI:10.1002/etc.350
  16. Kolanowska, A., Wąsik, P., Zięba, W., Terzyk, A.P. & Boncel, S. (2019) Selective carboxyla-tion versus layer-by-layer unsheathing of multi-walled carbon nanotubes: new insights from the reaction with boiling nitrating mixture. RSC Adv., 9, 37608-37613. DOI:10.1039/C9RA08300F
  17. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40, 1361–1403. DOI:10.1021/ja02242a004
  18. Lalwani, G., D’Agati, M., Khan, A.M. & Sitharaman, B. (2016). Toxicology of graphene-based nanomaterials. Adv. Drug Del. Rev., 105, 109–144. DOI:10.1016/j.addr.2016.04.028
  19. Lemańska, N., Felis, E., Poraj-Kobielska, M., Gajda-Meissner, Z. & Hofrichter, M. (2021). Comparison of sulphonamides decomposition efficiency in ozonation and enzymatic oxidation processes. Arch. Environ. Protect. 47 (1), 10–18. DOI:10.24425/aep.2021.136443
  20. Li, Y., Du, Q., Liu, T., Peng, X., Wang, J., Sun, J., Wang, Y., Wu, S., Wang, Z., Xia, Y. & Xia, L. (2013). Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chem. Eng. Res. and Des., 91(2), 361–368. DOI:10.1016/j.cherd.2012.07.007
  21. Li, D., Yang, M., Hu, J., Ren, L., Zhang, Y. & Li, K. (2008). Determination and fate of oxy-tetracycline and related compounds in oxytetracycline production wastewater and the receiving river. Environ. Toxicol. Chem. 27, 80-86. DOI:10.1897/07-080.1
  22. Liu, F.F., Zhao, J., Wang, S. & Xing, B. (2016). Adsorption of sulfonamides on reduced gra-phene oxides as affected by pH and dissolved organic matter. Environ. Pollut, 210, 85–93. DOI:10.1016/j.envpol.2015.11.053
  23. Liu, F.F., Zhao, J., Wang, S., Du, P. & Xing, B. (2014). Effects of solution chemistry on ad-sorption of selected pharmaceuticals and personal care products (PPCPs) by graphenes and carbon nanotubes. Environ. Sci. Technol. 48, 13197-13206. DOI:10.1021/es5034684
  24. Loos, R., Carvalho, R., António, D.C., Comero, S., Locoro, G., Tavazzi, S., Paracchini, B., Ghiani, M., Lettieri, T., Blaha, L., Jarosova, B., Voorspoels, S., Servaes, K., Haglund, P., Fickd, J., Lindberg, R.H., Schwesig, D. & Gawlik, B.M. (2013). EU-wide monitor-ing survey on emerging polar organic contaminants in wastewater treatment plant ef-fluents. Water Res. 47, 6475–6487. DOI:10.1016/j.watres.2013.08.024
  25. Ma, J., Yang, M., Yu, F. & Zheng, J. (2015). Water-enhanced Removal of Ciprofloxacin from Water by Porous Graphene Hydrogel. Sci Rep 5, 13578. DOI:10.1038/srep13578
  26. Michael, I., Rizzo, L., McArdell, C.S., Manaia, C.M., Merlin, C., Schwartz, T., Dagot, C. & Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for the re-lease of antibiotics in the environment: a review. Water Res. 47, 957–995. DOI:10.1016/j.watres.2012.11.027
  27. Pan, B. & Xing, B. (2008). Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ. Sci. Technol. 42, 9005–9013. DOI:10.1021/es801777n
  28. Papageorgiou, D.G., Kinloch, I.A. & Young, R.J. (2017). Mechanical properties of graphene and graphene-based nanocomposites. Prog. in Mat. Sci., 90, 75–127. DOI:10.1016/j.pmatsci.2017.07.004
  29. Reis, E.O., Foureaux, A.F.S., Rodrigues, J.S., Moreira, V.R., Lebron, Y.A.R., Santos, L.V.S., Amaral, M.C.S. & Lange, L.C. (2019). Occurrence, removal and seasonal variation of pharmaceuticals in Brasilian drinking water treatment plants. Environ. Pollut. 250, 773–781. DOI:10.1016/j.envpol.2019.04.102
  30. Rostamian, R. & Behnejad, H. (2018). A comprehensive adsorption study and modeling of antibiotics as a pharmaceutical waste by graphene oxide nanosheets. Eco. and Enviro. Saf., 147, 117–123. DOI:10.1016/j.ecoenv.2017.08.019
  31. Sheng, G.D., Shao, D.D., Ren, X.M., Wang, X.Q., Li, J.X., Chen, Y.X. & Wang, X.K. (2010). Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes. J. Hazar. Mat., 178(1-3), 505–516. DOI:10.1016/j.jhazmat.2010.01.110
  32. Smajic, J., Alazmi, A., Batra, N., Palanisamy, T., Anjum, D.H. & Cost, P.M.F.J. (2018). Mes-oporous Reduced Graphene Oxide as a High Capacity Cathode for Aluminum Batter-ies. Small, 14(51), 1803584. DOI:10.1002/smll.201803584
  33. Szymańska, U., Wiergowski, M., Sołtyszewski, I., Kuzemko, J., Wiergowska, G. & Woźniak, M.K. (2019). Presence of antibiotics in the aquatic environment in Europe and their analytical monitoring: recent trends and perspectives. Microchem. J. 147, 729–740. DOI:10.1016/j.microc.2019.04.003
  34. Verlicchi, P., Al Aukidy, M., Galletti, A., Petrovic, M. & Barceló, D. (2012). Hospital efflu-ent: investigation of the concentrations and distribution of pharmaceuticals and envi-ronmental risk assessment. Sci. Total Environ. 430, 109–118. DOI:10.1016/j.scitotenv.2012.04.055
  35. Wang, X., Yin, R., Zeng, L. & Zhu, M. (2019) A review of graphene-based nanomaterials for removal of antibiotics from aqueous environments. Environ. Pollut 253, 100-110. DOI:10.1016/j.envpol.2019.06.067
  36. Wang, C.J., Li, Z. & Jiang, W.T. (2011). Adsorption of ciprofloxacin on 2:1 dioctahedral clay minerals. Apply. Clay Sci., 53(4), 723–728. DOI:10.1016/j.clay.2011.06.014
  37. Wang, Z., Yu, X., Pan, B. & Xing, B. (2010). Norfloxacin Sorption and Its Thermodynamics on Surface-Modified Carbon Nanotubes. Environ. Sci. Technol, 44(3), 978–984. DOI:10.1021/es902775u
  38. Watkinson, A.J., Murby, E.J., Kolpin, D.W. & Costanzo, S.D. (2009). The occurrence of anti-biotics in an urban watershed: from wastewater to drinking water. Sci. Total Environ. 407, 2711–2723. DOI:10.1016/j.scitotenv.2008.11.059
  39. Xu, B., Yue, S., Sui, Z., Zhang, X., Hou, S., Cao, G. & Yang, Y. (2011). What is the choice for supercapacitors: graphene or graphene oxide? Energy Environ. Sci., 4(8), 2826-2830. DOI:10.1039/c1ee01198g
  40. Yadav, S., Goel, N. & Kumar, V. (2018). Removal of fluoroquinolone from aqueous solution using graphene oxide: experimental and computational elucidation. Environ Sci Pollut Res 25, 2942–2957. DOI:10.1007/s11356-017-0596-8
  41. Zhang, G.F., Liu, X., Zhang, S., Pan, B. & Liu, M.L. (2018). Ciprofloxacin derivatives and their antibacterial activities. Eu. J. Med. Chem. 146, 599-612. DOI:10.1016/j.ejmech.2018.01.078
  42. Zhang, D., Pan, B., Zhang, H., Ning, P. & Xing, B. (2010). Contribution of Different Sulfa-methoxazole Species to Their Overall Adsorption on Functionalized Carbon Nano-tubes. Environ. Sci. Technol, 44(10), 3806–3811. DOI:10.1021/es903851q
  43. Zhao, J., Wang, Z., Ghosh, S. & Xing, B. (2014). Phenanthrene binding by humic acideprotein complexes as studied by passive dosing technique. Environ. Pollut. 184, 145-153. DOI:10.1016/j.envpol.2013.08.028
  44. Zheng, H., Wang, Z., Zhao, J., Herbert, S. & Xing, B. (2013). Sorption of antibiotic sulfa-methoxazole varies with biochars produced at different temperatures. Environ. Pollut, 181, 60–67. DOI:10.1016/j.envpol.2013.05.056
  45. Zhu, D.Q. & Pignatello, J.J. (2005). Characterization of aromatic compound sorptive interac-tions with black carbon (charcoal) assisted by graphite as a model, Environ. Sci. Tech-nol. 39, 2033–2041. DOI:10.1021/es0491376
Go to article

Authors and Affiliations

Filip Gamoń
1
Mariusz Tomaszewski
1
Grzegorz Cema
1
Aleksandra Ziembińska-Buczyńska
1

  1. Silesian University of Technology, Department of Environmental Biotechnology, Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

A revolutionary invention from Nanoseen, a nanotechnology startup headquartered in Poland, is likely to soon help solve the widespread problem of access to clean, fresh water
Go to article

Authors and Affiliations

Bartosz Kruszka
1
Aleksandra Szudzik
1

  1. Nanoseen Sp. z o. o. in Gdynia
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper is to present characteristics, toxicity and environmental behavior of nanoparticles (NPs) (silver, copper, gold, zinc oxide, titanium dioxide, iron oxide) that most frequently occur in consumer products. In addition, NPs are addressed as the new aquatic environmental pollutant of the 21st century. NPs are adsorbed onto particles in the aquatic systems (clay minerals, fulvic and humic acids), or they can adsorb environmental pollutants (heavy metal ions, organic compounds). Nanosilver (nAg) is released from consumer products into the aquatic environment. It can threaten aquatic organisms with high toxicity. Interestingly, copper nanoparticles (Cu-NPs) demonstrate higher toxicity to bacteria and aquatic microorganisms than those of nanosilver nAg. Their small size and reactivity can cause penetration into the tissues and interfere with the metabolic systems of living organisms and bacterial biogeochemical cycles. The behavior of NPs is not fully recognized. Nevertheless, it is known that NPs can agglomerate, bind with ions (chlorides, sulphates, phosphates) or organic compounds. They can also be bound or immobilized by slurry. The NPs behavior depends on process conditions, i.e. pH, ionic strength, temperature and presence of other chemical compounds. It is unknown how NPs behave in the aquatic environment. Therefore, the research on this problem should be carried out under different process conditions. As for the toxicity, it is important to understand where the differences in the research results come from. As NPs have an impact on not only aquatic organisms but also human health and life, it is necessary to recognize their toxic doses and know standards/regulations that determine the permissible concentrations of NPs in the environment.

Go to article

Authors and Affiliations

Iwona Krzyżewska
Czesława Rosik-Dulewska
Joanna Kyzioł-Komosińska
Justyna Czupioł
Patrycja Antoszczyszyn-Szpicka
Download PDF Download RIS Download Bibtex

Abstract

Hybrid filter material was obtained via modification of polypropylene (PP) nonwoven with nanosize zinc oxide particles of a high aspect ratio. Modification was conducted as a three-step process, a variant of hydrothermal method used for synthesis of nano-ZnO, adopted for coating three dimensional polymeric nonwoven filters. The process consisted of plasma treatment of nonwoven to increase its wettability, deposition of ZnO nanoparticles and low temperature hydrothermal growth of ZnO rods. The modified nonwovens were investigated by a high resolution scanning electron microscopy (HR-SEM). It has been found that the obtained hybrid filters offer a higher filtration efficiency, in particular for so called most penetrating particle sizes.

Go to article

Authors and Affiliations

Szymon Jakubiak
Justyna Tomaszewska
Anna Jackiewicz
Jakub Michalski
Krzysztof J. Kurzydłowski
Download PDF Download RIS Download Bibtex

Abstract

The aim of the presented research was to test different carbon supports, such as graphene oxide (GO), graphene oxide modified with ammonia (N-GO), and reduced graphene oxide (rGO) for catalysts used in a low-temperature fuel cell, specifically a proton exchange membrane fuel cell (PEMFC). Modification of the carbon supports should lead to different catalytic activity in the fuel cell. Reduction of GO leads to partial removal of oxygen groups from GO, forming rGO. Modification of GO with ammonia results in an enrichment of GO structure with nitrogen. A thorough analysis of the used supports was carried out, using various analytical techniques, such as FTIR spectroscopy and thermogravimetric (TGA) analysis. Palladium and platinum catalysts deposited on these supports were produced and used for the oxygen reduction reaction (ORR). Catalytic activity tests of the prepared catalysts were carried out in a home-made direct formic acid fuel cell (DFAFC). The tests showed that the enrichment of the GO structure with nitrogen caused an increase in the catalytic activity, especially for the palladium catalyst. However, reduction of GO resulted in catalysts with higher activity and the highest catalytic activity was demonstrated by Pt/rGO, because platinum is the most catalytically active metal for ORR. The obtained results may be significant for low-temperature fuel cell technology, because they show that a simple modification of a carbon support may lead to a significant increase of the catalyst activity. This could be useful especially in lowering the cost of fuel cells, which is an important factor, because thousands of fuel cells running on hydrogen are already in use in commercial vehicles, forklifts, and backup power units worldwide. Another method used for lowering the price of current fuel cells can involve developing new clean and cheap production methods of the fuel, i.e. hydrogen. One of them employs catalytic processes, where carbon materials can be also used as a support and it is necessary to know how they can influence catalytic activity.

Go to article

Authors and Affiliations

Zuzanna Bojarska
Marta Mazurkiewicz-Pawlicka
Łukasz Makowski

This page uses 'cookies'. Learn more