Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Digitaria insularis (sourgrass) is a monocotyledon weed of difficult control and high invasive behavior. Atrazine is widely applied in the Americas to control weeds in maize culture, but its efficiency against D. insularis is limited. The incorporation of atrazine into poly(epsilon-caprolactone) nanocapsules increased the herbicidal activity against susceptible weeds; however, the potential of this nanoformulation to control atrazine-tolerant weeds including D. insularis has not yet been tested. Here, we evaluated the post-emergent herbicidal activity of nanoatrazine against D. insularis plants during initial developmental stages. The study was carried out in a greenhouse, using pots filled with clay soil. Plants with two or four expanded leaves were treated with conventional or nanoencapsulated atrazine at 50 or 100% of the recommended dosage (1,000 or 2,000 g ∙ ha−1), followed by the evaluation of physiological, growth, and control parameters of the plants. Compared with conventional herbicide, both dosages of nanoatrazine induced greater and faster inhibition of D. insularis photosystem II activity at both developmental stages. Atrazine nanoencapsulation also improved the control of D. insularis plants, especially in the stage with two expanded leaves. In addition, nanoatrazine led to higher decreases of dry weight of fourleaved plants than atrazine. The use of the half-dosage of nanoatrazine was equally or more efficient in affecting most of the evaluated parameters than the conventional formulation at full dosage. Overall, these results suggest that the nanoencapsulation of atrazine potentiated its post-emergent herbicidal activity against D. insularis plants at initial developmental stages, favoring the control of this atrazine-tolerant weed.

Go to article

Authors and Affiliations

Bruno Teixeira Sousa
Anderson do Espírito Santo Pereira
Leonardo Fernandes Fraceto
Halley Caixeta de Oliveira
Giliardi Dalazen
Download PDF Download RIS Download Bibtex

Abstract

Food and crops are sourced primarily from agriculture, and due to the enormous growth in population, agricultural goods are in great demand, while farmland is being developed for residences. Therefore, certain chemicals, like pesticides, are being overused and have become unavoidable to increase crop productivity and storage. Excessive release of pesticides into the environment and food chain may pose a health risk. Food and agricultural products need routine analyses to monitor the level of pesticide residuals. As pesticide detection techniques are labor-intensive and require highly qualified professionals, an alternative technique must be developed, such as analytical nanotechnology. The most commonly used nanomaterials for pesticide delivery, enrichment, degradation, detection, and removal are metals, clays, polymers, and lipids. In colorimetric analysis of pesticides, metal nanoparticles are widely used which are quick, easy, and do not require any sample preparation. This manuscript compiles the latest research on nanotechnology in pesticide formulation and detection for smart farming.
Go to article

Authors and Affiliations

Karthick Harini
1
ORCID: ORCID
Koyeli Girigoswami
1
ORCID: ORCID
Pragya Pallavi
1
ORCID: ORCID
Anbazhagan Thirumalai
1
ORCID: ORCID
Pemula Gowtham
1
ORCID: ORCID
Agnishwar Girigoswami
1
ORCID: ORCID

  1. Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai-603 103, India
Download PDF Download RIS Download Bibtex

Abstract

In this research work, a Cylindrical Surrounding Double-Gate (CSDG) MOSFET design in a stacked-Dual Metal Gate (DMG) architecture has been proposed to incorporate the ability of gate metal variation in channel field formation. Further, the internal gate's threshold voltage (VTH1) could be reduced compared to the external gate (VTH2) by arranging the gate metal work-function in Double Gate devices. Therefore, a device design of CSDG MOSFET has been realized to instigate the effect of Dual Metal Gate (DMG) stack architecture in the CSDG device. The comparison of device simulation shown optimized electric field and surface potential profile. The gradual decrease of metal work function towards the drain also improves the Drain Induced Barrier Lowering (DIBL) and subthreshold characteristics. The physics-based analysis of gate stack CSDG MOSFET that operates in saturation involving the analogy of cylindrical dual metal gates has been considered to evaluate the performance improvements. The insights obtained from the results using the gate-stack dual metal structure of CSDG are quite promising, which can serve as a guide to further reduce the threshold voltage roll-off, suppress the Hot Carrier Effects (HCEs) and Short Channel Effects (SCEs).
Go to article

Authors and Affiliations

Abha Dargar
1
Viranjay M. Srivastava
1

  1. Department of Electronic Engineering, Howard College, University of KwaZulu-Natal, Durban, 4041, South Africa
Download PDF Download RIS Download Bibtex

Abstract

To explore the basic principles of hierarchical materials designed from nanoscale and up, we have been studying the mechanics of robust and releasable adhesion nanostructures of gecko [1]. On the question of robust adhesion, we have introduced a fractal-like hierarchical hair model to show that structural hierarchy allows the work of adhesion to be exponentially enhanced as the level of structural hierarchy is increased. We show that the nanometer length scale plays an essential role in the bottom-up design and, baring fracture of hairs themselves, a hierarchical hair system can be designed from nanoscale and up to achieve flaw tolerant adhesion at any length scales. For releasable adhesion, we show that elastic anisotropy leads to orientation-dependent adhesion strength. Finite element calculations revealed that a strongly anisotropic attachment pad in contact with a rigid substrate exhibits essentially two levels of adhesion strength depending on the direction of pulling.

Go to article

Authors and Affiliations

H. Yao
H. Gao

This page uses 'cookies'. Learn more