Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This work aims to analyze the effects of niobium on the bioactivity of a titanium, nickel, aluminum, and niobium alloy obtained by the Plasma Skull Push Pull process (PSPP). Titanium alloys, such as NiTinol (NiTi), are metallic biomaterials that have wide application in health and surgical prostheses. In this work the microstructural and bioactivity characteristics of the alloys are evaluated. The addition of aluminum improves alloy ductility and reduces its cost. The addition of niobium favors the hydroxyapatite nucleation. Therefore, the addition of the combination of the two elements contributes to lower cost and better alloy bioactivity.
Go to article

Authors and Affiliations

R.L.P. Teixeira
1
ORCID: ORCID
J.C. de Lacerda
1
ORCID: ORCID
I.C Conceição
1
ORCID: ORCID
S.N. da Silva
2
ORCID: ORCID
G.O. Siqueira
1
ORCID: ORCID
F. Moura Filho
1
ORCID: ORCID

  1. Universidade Federal de Itajubá, Itabira, MG, Brazil
  2. Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, MG, Brazil
Download PDF Download RIS Download Bibtex

Abstract

The main objective of the work was to create a layer of carbon nanofibre on the surface of the NiTi shape memory alloy. The coating process was carried out in three stages. First, polyacrylonitrile was deposited by electrospinning. Then it was stabilized at temperatures up to 250°C. The last stage was the carbonization performed below 1000°C. The microstructure of the obtained coatings was observed using a scanning electron microscope. The X-ray diffraction techniques were applied to analyze the coating structure. After the polyacrylonitrile deposition, the fibers had an average diameter of about 280 nm, and the final fibers were almost twice as tiny. The applied steps also changed the phase and crystalline state of the fibers, finally leading to the formation of amorphous-nanocrystalline graphite.
Go to article

Authors and Affiliations

T. Goryczka
1
ORCID: ORCID
B. Szaraniec
2
ORCID: ORCID
E. Stodolak-Zych
2
ORCID: ORCID
S. Kluska
2
ORCID: ORCID

  1. University of Silesia in Katowice, Institute of Materials Science, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
  2. AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

NiTi alloys are successfully used in engineering and medical applications because of their properties, such as shape memory effect, superelasticity or mechanical strength. A composite with Mg matrix, due to its vibration damping properties, can be characterized by low weight and good vibration damping properties. In this study, a combination of two techniques was used for successful fabrication of Mg composite reinforced by NiTi alloy preform. The porous preforms synthesized by Self-propagating High-temperature Synthesis (SHS) from elemental powders were subsequently infiltrated with Mg by squeeze casting. The effects were examined with scanning electron microscope with EDS detector, X-ray diffraction and microindentation. The inspection has shown well-connected matrix and reinforcement; no reaction at the interface and open porosities fully infiltrated by liquid Mg. Moreover, analysis of samples’ fracture has exhibited that crack propagates inside the Mg matrix and there is no detachment of reinforcement.

Go to article

Authors and Affiliations

A. Kucharczyk
K. Naplocha
M. Tomanik

This page uses 'cookies'. Learn more