Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to evaluate the combined effect of noise exposure and additional risk factors on permanent hearing threshold shift. Three additional risk factors were: exposure to organic solvents, smoking and elevated blood pressure.

The data on exposure and health status of employees were collected in 24 factories. The study group comprised of 3741 noise male exposed workers of: mean age 39±8 years, mean tenure 16±7 years and LEX,8h = 86 ± 5 dB. For each subject, hearing level was measured with pure tone audiometry, blood pressure and noise exposure were assessed from the records of local occupational health care and obligatory noise measurements performed by employers. Smoking and solvent exposure were assessed with questionnaire. The study group was divided into subgroups with respect to the considered risk factors. In the analysis, the distribution of hearing level of each subgroup was compared to the predicted one which the standard calculation method described in ISO 1999:1990. For each of the considered risk factors, the difference between measured and calculated hearing level distribution was used to establish, by the least square method, a noise dose related correction square function for the standard method. The considered risk factors: solvent exposure, smoking and elevated blood pressure combined with noise exposure, may increase degree of hearing loss.

Go to article

Authors and Affiliations

Adam Dudarewicz
Esko Toppila
Małgorzata Pawlaczyk-Łuszczyńska
Mariola Śliwińska-Kowalska
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study study was to model, with the use of a neural network algorithm, the significance of a variety of factors influencing the development of hearing loss among industry workers. The workers were categorized into three groups, according to the A-weighted equivalent sound pressure level of noise exposure: Group 1 (LAeq < 70 dB), Group 2 (LAeq 70–80 dB), and Group 3 (LAeq > 85 dB). The results obtained for Group 1 indicate that the hearing thresholds at the frequencies of 8 kHz and 1 kHz had the maximum effect on the development of hearing loss. In Group 2, the factors with maximum weight were the hearing threshold at 4 kHz and the worker’s age. In Group 3, maximum weight was found for the factors of hearing threshold at a frequency of 4 kHz and duration of work experience. The article also reports the results of hearing loss modeling on combined data from the three groups. The study shows that neural data mining classification algorithms can be an effective tool for the identification of hearing hazards and greatly help in designing and conducting hearing conservation programs in the industry.

Go to article

Authors and Affiliations

Sajad Zare
Mohammad Reza Ghotbiravandi
Hossein Elahishirvan
Mostafa Ghazizadeh Ahsaeed
Mina Rostami
Reza Esmaeili
Download PDF Download RIS Download Bibtex

Abstract

Noise induced hearing loss (NIHL) as one of the major avoidable occupational related health issues has been studied for decades. To assess NIHL, the excitation pattern (EP) has been considered as one of the mechanisms to estimate the movements of the basilar membrane (BM) in the cochlea. In this study, two auditory filters, dual resonance nonlinear (DRNL) filter and rounded-exponential (ROEX) filter are applied to create two EPs, the velocity EP and the loudness EP respectively. Two noise hazard metrics are proposed based on two proposed EPs to evaluate hazardous levels caused by different types of noise. Moreover Gaussian noise and tone signals are simulated to evaluate performances of the proposed EPs and the noise metrics. The results show that both EPs can reflect the responses of the BM to different types of noise. For Gaussian noise there is a frequency shift between the velocity EP and the loudness EP. The results suggest that both EPs can be used for assessment of NIHL.

Go to article

Authors and Affiliations

Wisam Subhi Al-Dayyeni
Sun Pengfei
Qin Jun
Download PDF Download RIS Download Bibtex

Abstract

The overall purpose of this study was to assess hearing status in professional orchestral musicians. Standard pure-tone audiometry (PTA) and transient-evoked otoacoustic emissions (TEOAEs) were per- formed in 126 orchestral musicians. Occupational and non-occupational risk factors for noise-induced hearing loss (NIHL) were identified in questionnaire inquiry. Data on sound pressure levels produced by various groups of instruments were also collected and analyzed. Measured hearing threshold levels (HTLs) were compared with the theoretical predictions calculated according to ISO 1999 (1990). Musicians were exposed to excessive sound at weekly noise exposure levels of for 81-100 dB (mean: 86.6±4.0 dB) for 5-48 years (mean: 24.0±10.7 years). Most of them (95%) had hearing corresponds to grade 0 of hearing impairment (mean hearing threshold level at 500, 1000, 2000 and 4000 Hz lower than 25 dB). However, high frequency notched audiograms typical for noise-induced hearing loss were found in 35% of cases. Simultaneously, about 35% of audiograms showed typical for NIHL high frequency notches (mainly occurring at 6000 Hz). When analyzing the impact of age, gender and noise exposure on hearing test results both PTA and TEOAE consistently showed better hearing in females vs. males, younger vs. older musicians. But higher exposure to orchestral noise was not associated with poorer hearing tests results. The musician’s audiometric hearing threshold levels were poorer than equivalent non-noise-exposed population and better (at 3000 and 4000 Hz) than expected for noise-exposed population according to ISO 1999 (1990). Thus, music impairs hearing of orchestral musicians, but less than expected from noise exposure.
Go to article

Authors and Affiliations

Małgorzata Pawlaczyk-Łuszczyńska
Małgorzata Zamojska
Adam Dudarewicz
Kamil Zaborowski
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to evaluate the hearing status of call centre operators in relation to their noise exposure. Conventional pure-tone audiometry and extended high-frequency audiometry were performed in 49 workers, aged 22–47 years (mean ± SD: 32.0 ± 6.0 years), working in call centre from 1.0 to 16.5 years (mean ± SD: 4.7 ± 2.9 years).

Questionnaire inquiry aimed at collecting personal data, the information on ommunication headset usage habits, self-assessment of hearing ability and identification of risk factors for noise-induced hearing loss were also carried out. Sound pressure levels generated by the communication headset were determined using the artificial ear technique specified in CSA Z107.56-13 (2013) standard. The background noise prevailing in offices was also measured according to PN-N-01307 (1994) and PN-EN ISO 9612 (2011).

Personal daily noise exposure levels in call centre operators varied from 66 to 86 dB (10–90th percentile). About half of the study subjects had normal hearing in the standard frequencies (from 250 to 8000 Hz) in both ears, while only 27.1% in the extended high-frequencies (9–16 kHz). Moreover, both high-frequency and speech-frequency hearing losses were observed in less than 10% of audiograms, while the extended high-frequency threshold shift was noted in 37.1% of analysed ears. The hearing threshold

levels of call centre operators in the frequency of 0.25–11.2 kHz were higher (worse) than the expected median values for equivalent (due to age and gender) highly screened population specified in ISO 7029 (2017). Furthermore, they were also higher than predicted for 500–4000 Hz according to ISO 1999 (2013) based on the results of noise exposure evaluation.

Go to article

Authors and Affiliations

Małgorzata Pawlaczyk-Łuszczyńska
Małgorzata Zamojska-Daniszewska
Kamil Zaborowski
Adam Dudarewicz
Download PDF Download RIS Download Bibtex

Abstract

Noise induced hearing loss (NIHL) is a serious occupational related health problem worldwide. The A-wave impulse noise could cause severe hearing loss, and characteristics of such kind of impulse noise in the joint time-frequency (T-F) domain are critical for evaluation of auditory hazard level. This study focuses on the analysis of A-wave impulse noise in the T-F domain using continual wavelet transforms. Three different wavelets, referring to Morlet, Mexican hat, and Meyer wavelets, were investigated and compared based on theoretical analysis and applications to experimental generated A-wave impulse noise signals. The underlying theory of continuous wavelet transform was given and the temporal and spectral resolutions were theoretically analyzed. The main results showed that the Mexican hat wavelet demonstrated significant advantages over the Morlet and Meyer wavelets for the characterization and analysis of the A-wave impulse noise. The results of this study provide useful information for applying wavelet transform on signal processing of the A-wave impulse noise.
Go to article

Authors and Affiliations

Jun Qin
Pengfei Sun

This page uses 'cookies'. Learn more