Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Noise pollution is a major problem nowadays. In urban context, road traffic is the main source of noise pollution. People directly exposed to road traffic noise suffer from moderate to severe annoyance, headache, stress, feeling of exhaustion, and reduced work performance efficiency. As the sources and severity of noise pollution continue to grow, new approaches are needed to reduce the exposure. In this research, noise abatement has been investigated using a computer simulation model (SoundPLAN essential 4.0). Noise maps were developed using SoundPLAN essential 4.0 software. Noise maps are very beneficial to identify the impact of noise pollution. Data required for mapping are noise data (LAeq), road inventory data, geometric features of mapping area, category wise traffic counts, category wise vehicle speed, meteorological data such as wind velocity, humidity, temperature, air pressure. LAeq observed on all locations of the Central zone of Surat city was greater than the prescribed central pollution control board (CPCB) limits during day time and night time. This paper is focused on using acoustic software for the simulation and calculation methods of controlling the traffic noise. According to the characteristics of traffic noise and the techniques of noise reduction, road traffic noise maps were developed using SoundPLAN essential 4.0 software to predict the scope of road traffic noise. On this basis, four reasonable noise control schemes were used to control noise, and the feasibility and application effect of these control schemes can be verified by using the method of simulation modelling. The simulation results show that LAeq is reduced by up to 5 dB(A). The excess noise can be efficiently reduced by using the corresponding noise reduction methods.
Go to article

Bibliography

1. Arana M.R.S., Nagore I., Pérez D. (2013), Main results of strategic noise maps and action plans in Navarre (Spain), Environmental Monitoring and Assessment, 185(6): 4951–4957, doi: 10.1007/s10661-012-2916-2.
2. Central Pollution Control Board (2000), Noise pollution regulation in India.
3. Cerdá S., Lacatis R., Gimenez A. (2013), On absorption and scattering coefficient effects in modellisation software, Acoustics Australia, 41(2): 151–155.
4. Golmohammadi R., Abbaspour M., Nassiri P., Mahjub H. (2007), Road traffic noise model, Journal of Research in Health Sciences, 7(1): 13–7, http://www.ncbi.nlm.nih.gov/pubmed/23343866.
5. Jhanwar D. (2016), Noise pollution: a review, Journal of Environment Pollution and Human Health, 4(3): 72– 77, doi: 10.12691/jephh-4-3-3.
6. Lavanya C., Dhankar R., Chhikara S. (2014), Noise Pollution: an Overview, International Journal of Current Research, 6(5): 6536–6543.
7. Manojkumar N., Basha K., Srimuruganandam B. (2019), Assessment, prediction and mapping of noise levels in Vellore City, India, Noise Mapping, 6(1): 38– 51, doi: 10.1515/noise-2019-0004
8. Oguntunde P.E., Okagbue H.I., Oguntunde O.A., Odetunmibi O.O. (2019), Public health in Ota Metropolis, Access Macedonian Journal of Medical Sciences, 7(8): 1391, doi: 10.3889/oamjms.2019.234
9. Paszkowski W., Sobiech M. (2019), The modeling of the acoustic condition of urban environment using noise annoyance assessment, Environmental Modeling and Assessment, 24(3): 319–330, doi: 10.1007/s10666-018-9643-1.
10. Prajapati P., Devani A.N. (2017), Review paper on noise reduction using different techniques, International Research Journal of Engineering and Technology (IRJET), 4(3): 522–524, https://irjet.net/archives/V4/i3/IRJET-V4I3145.pdf.
11. Sonaviya D.R., Tandel B.N. (2019a), 2-D noise maps for tier-2 city urban Indian roads, Noise Mapping, 6(1): 1–7, doi: 10.1515/noise-2019-0001.
12. Sonaviya D.R., Tandel B.N. (2019b), A review on GIS based approach for road traffic noise mapping, Indian Journal of Science and Technology, 12(14): 1–6, doi: 10.17485/ijst/2019/v12i14/132481.
13. Sonaviya D.R., Tandel B.N. (2020), Integrated road traffic noise mapping in urban Indian context, Noise Mapping, 7(1): 99–113, doi: 10.1515/noise-2020-0009.
14. Tandel B.N., Macwan J.E.M. (2017), Road traffic noise exposure and hearing impairment among traffic policemen in Surat, Western India, Journal of The Institution of Engineers (India): Series A, 98(1–2): 101–105, doi: 10.1007/s40030-017-0210-6.
15. Wolniewicz K., Zagubien A. (2015), Verifying traffic noise analysis calculation models, Polish Journal of Environmental Studies, 24(6): 2767–2772, doi: 10.15244/pjoes/58962.
Go to article

Authors and Affiliations

Dipeshkumar Ratilal Sonaviya
1
Bhaven N. Tandel
1

  1. Civil Engineering Department, SVNIT Surat, India
Download PDF Download RIS Download Bibtex

Abstract

M-estimators are widely used in active noise control (ANC) systems in order to update the adaptive FIR filter taps. ANC systems reduce the noise level by generating anti-noise signals. Up to now, the evaluation of M-estimators capabilities has shown that there exists a need for further improvements in this area. In this paper, a new improved M-estimator is proposed. The sensitivity of the proposed algorithm to the variations of its constant parameter is checked in feedforward control. The effectiveness of the algorithm in both types is proved by comparing it with previous studies. Simulation results show the steady performance and fast initial convergence of the proposed algorithm.
Go to article

Bibliography

1. Akhtar M.T., Mitsuhashi W. (2010), A modified normalized FxLMS algorithm for active control of impulsive noise, Proceedings of 18th European Signal Processing Conference (EUSIPCO), IEEE, pp. 1–5, Aalborg.
2. Ang L.Y.L., Koh Y.K., Lee H.P. (2017), The performance of active noise-canceling headphones in different noise environments, Applied Acoustics, 122: 16– 22, doi: 10.1016/j.apacoust.2017.02.005.
3. Behera S. K., Das D.P., Subudhi B. (2017), Adaptive nonlinear active noise control algorithm for active headrest with moving error microphones, Applied Acoustics, 123: 9–19, doi: 10.1016/j.apacoust.2017.03.002.
4. Darvish M., Frank S., Paschereit C.O. (2015), Numerical and experimental study on the tonal noise generation of a radial fan, Journal of Turbomachinery, 137(10): 101005, doi: 10.1115/1.4030498.
5. Elliott S. (2001), Signal Processing for Active Control, Academic Press, Elsevier.
6. Ertas H., Kaçıranlar S., Güler H. (2017), Robust Liu-type estimator for regression based on M-estimator, Communications in Statistics-Simulation and Computation, 46(5): 3907–3932, doi: 10.1080/03610918.2015.1045077.
7. Khan W.U., Ye Z., Altaf F., Chaudhary N.I., Raja M.A.Z. (2019), A novel application of fireworks heuristic paradigms for reliable treatment of nonlinear active noise control, Applied Acoustics, 146: 246–260, doi: 10.1016/j.apacoust.2018.11.024.
8. Kuo S.M., Morgan D.R. (1999), Active noise control: a tutorial review, Proceedings of the IEEE, 87(6): 943–973, doi: 10.1109/5.763310.
9. Lee J.W., Lee J.C., Pandey J., Ahn S.H., Kang Y.J. (2010), Mechanical properties and sound insulation effect of ABS/carbon-black composites, Journal of Composite Materials, 44(14): 1701–1716, doi: 10.1177/0021998309357673
10. Li J., Chen W. (2018), Singular boundary method based on time-dependent fundamental solutions for active noise control, Numerical Methods for Partial Differential Equations, 34(4): 1401–1421, doi: 10.1002/num.22263.
11. Lu L., Zhao H. (2017), Active impulsive noise control using maximum correntropy with adaptive kernel size, Mechanical Systems and Signal Processing, 87(part A) 180–191, doi: 10.1016/j.ymssp.2016.10.020.
12. Nelson P.A., Elliott S.J. (1991), Active Control of Sound, Academic Press, Elsevier. 13. Nunez I.J., Miranda J.G., Duarte M.V. (2019), Active noise control in acoustic shutters, Applied Acoustics, 152: 41–46, doi: 10.1016/j.apacoust.2019.03.024.
14. Patel V., George N.V. (2015), Nonlinear active noise control using spline adaptive filters, Applied Acoustics, 93: 38–43, doi: 10.1016/j.apacoust.2015.01.009.
15. Paul L. (1934), Process of silencing sound oscillations, Google patents. 16. Sabet S.M., Keshavarz R., Ohadi A. (2018), Sound isolation properties of polycarbonate/clay and polycarbonate/silica nanocomposites, Iranian Polymer Journal, 27(1): 57–66, doi: 10.1007/s13726-017-0585-2.
17. Sabzevari S.A.H., Moavenian M. (2017), Application of reinforcement learning for active noise control, Turkish Journal of Electrical Engineering & Computer Sciences, 25(4): 2606–2613.
18. Sen K.M., Morgan D.R. (1996), Active Noise Control Systems: Algorithms and DSP Implementations, John Wiley and Sons.
19. Suhail M., Chand S., Kibria B.G. (2019), Quantile-based robust ridge m-estimator for linear regression model in presence of multicollinearity and outliers, Communications in Statistics-Simulation and Computation, 1–13, doi: 10.1080/03610918.2019.1621339.
20. Sun G., Li M., Lim T.C. (2015), Enhanced filteredx least mean M-estimate algorithm for active impulsive noise control, Applied Acoustics, 90: 31–41, doi: 10.1016/j.apacoust.2014.10.012.
21. Tan L., Jiang J. (2015), Active control of impulsive noise using a nonlinear companding function, Mechanical Systems and Signal Processing, 58: 29–40, doi: 10.1016/j.ymssp.2015.01.010.
22. Thanigai P., Kuo S.M., Yenduri R. (2007), Nonlinear active noise control for infant incubators in neonatal intensive care units, Proceedings of 2007 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp. 1–109, Honolulu, doi: 10.1109/ICASSP.2007.366628.
23. Vu H.-S., Chen K.H. (2017), A high-performance feedback FxLMS active noise cancellation VLSI circuit design for in-ear headphones, Circuits, Systems and Signal Processing, 36(7): 2767–2785, doi: 10.1007/s00034-016-0436-y.
24. Wu L., Qiu X. (2013), An M-estimator based algorithm for active impulse-like noise control, Applied Acoustics, 74(3: 407–412, doi: 10.1016/j.apacoust.2012.06.019.
Go to article

Authors and Affiliations

Seyed Amir Hoseini Sabzevari
1
Seyed Iman Hoseini Sabzevari
2

  1. Department of Mechanical Engineering, University of Gonabad, Gonabad, 9691957678, Iran
  2. Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
Download PDF Download RIS Download Bibtex

Abstract

Numerous European countries experience a steady increase in the share of electric (EV) and hybrid electric (HEV) vehicles in the traffic stream. These vehicles, often referred to as low- or zero-emission vehicles, significantly reduce air pollution in the road environment. They also have a positive effect on noise levels in city centers and in the surroundings of low-speed roads. Nevertheless, issues related to modeling noise from electric and hybrid vehicles in the outdoor environment are still not fully explored, especially in the rural road settings. The article attempts to assess the degree of noise reduction around these roads based on different percentages of EVs in the traffic stream. Input data for noise modeling was obtained from 133 sections of homogeneous rural roads in Poland. Based on their analysis, it was first determined on how many of these road sections electric-vehicle-induced noise reduction would be possible, taking into account the traffic speeds occurring on them. Next, a computational algorithm that can be used to calculate noise reduction in the CNOSSOS-EU model is presented, and noise modeling is performed based on it for different percentages of electric vehicles in the traffic stream.
Go to article

Authors and Affiliations

Maciej Hałucha
1
ORCID: ORCID
Janusz Bohatkiewicz
2
ORCID: ORCID
Piotr Mioduszewski
3
ORCID: ORCID

  1. EKKOM Sp. z o.o., ul. dr Józefa Babinskiego 71B, 30-394 Cracow, Poland
  2. Tadeusz Kosciuszko Cracow University of Technology, Faculty of Civil Engineering, ul. Warszawska 24, 31-155 Cracow, Poland
  3. Gdansk University of Technology, Faculty of Mechanical Engineering and Ship Technology, ul. Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a video encoding method in which noise is encoded using a novel parametric model representing spectral envelope and spatial distribution of energy. The proposed method has been experimentally assessed using video test sequences in a practical setup consisting of a simple, real-time noise reduction technique and High Efficiency Video Codec (HEVC). The attained results show that the use of the proposed parametric modelling of noise can improve the subjective quality of reconstructed video by approximately 1.8 Mean Opinion Scope (MOS) points (in 11-point scale) related to the classical video coding. Moreover, the present work confirms results attained in the previous works that the usage of even sole noise reduction prior to the encoding provides quality increase.

Go to article

Authors and Affiliations

O. Stankiewicz

This page uses 'cookies'. Learn more