Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 12
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A heterogeneous Bertrand duopoly game with bounded rational and adaptive players manufacturing differentiated products is subject of investigation. The main goal is to demonstrate that participation of one bounded rational player in the game suffices to destabilize the duopoly. The game is modelled with a system of two difference equations. Evolution of prices over time is obtained by iteration of a two dimensional nonlinear map. Equilibria are found and local stability properties thereof are analyzed. Complex behavior of the system is examined by means of numerical simulations. Region of stability of the Nash equilibrium is demonstrated in the plane of the speeds of adjustment. Period doubling route to chaos is presented on the bifurcation diagrams and on the largest Lyapunov characteristic exponent graph. Lyapunov time is calculated. Chaotic attractors are depicted and their fractal dimensions are computed. Sensitive dependence on initial conditions is evidenced.

Go to article

Authors and Affiliations

Tomasz Dubiel-Teleszyński
Download PDF Download RIS Download Bibtex

Abstract

The integration of chaos theory and history has been an issue ofmany scientific discussions, but failed to produce any results. Author reexamines the discussions, mathematical features of the theory and claims that proposed ways of integration couldn't have been used practically. Author asks if such integration is possible and i fit can have any intrinsic value for advancement of historical knowledge. Proposed solution is to use chaos theory as a tool, which enables historians to analyze causal relations in the past.
Go to article

Authors and Affiliations

Maciej Gablankowski
Download PDF Download RIS Download Bibtex

Abstract

Double-beam model is considered in many investigations both theoretical and typically engineering ones. One can find different studies concerning analysis of such structures behaviour, especially in the cases where the system is subjected to dynamic excitations. This kind of model is successfully considered as a reliable representation of railway track. Inclusion of nonlinear physical and geometrical properties of rail track components has been justified by various computational studies and theoretical analyses. In order to properly describe behaviour of real structures their nonlinear properties cannot be omitted. Therefore a necessity to search appropriate analytical nonlinear models is recognized and highlighted in published literature. This paper presents essential extension of previously carried out double-beam system analysis. Two nonlinear factors are taken into account and parametrical analysis of the semi-analytical solution is undertaken with special emphasis on different range of parameters describing nonlinear stiffness of foundation and layer between beams. This study is extended by preliminary discussion regarding the dynamic effects produced by a series of loads moving along the upper beam. A new solution for the case of several forces acting on the upper beam with different frequencies of their variations in time is presented and briefly discussed.
Go to article

Authors and Affiliations

Piotr Koziol
1
ORCID: ORCID
Rafał Pilecki
2
ORCID: ORCID

  1. PhD, DSc, Assoc. Prof., Cracow University of Technology, Faculty of Civil Engineering, ul. Warszawska 24, 31-155 Kraków, Poland
  2. MSc, Eng., former student of Cracow University of Technology
Download PDF Download RIS Download Bibtex

Abstract

The chaotic phenomena of coronary artery systems are hazardous to health and may induce illness development. From the perspective of engineering, the potential harm can be eliminated by synchronizing chaotic coronary artery systems with a normal one. This paper investigates the chaos synchronization problem in light of the methodology of sliding mode control (SMC). Firstly, the nonlinear dynamics of coronary artery systems are presented. Since the coronary artery systems suffer from uncertainties, the technique of derivative-integral terminal SMC is employed to achieve the chaos synchronization task. The stability of such a control system is proven in the sense of Lyapunov. To verify the feasibility and effectiveness of the proposed method, some simulation results are illustrated in comparison with a benchmark.

Go to article

Authors and Affiliations

D.W. Qian
Y.F. Xi
S.W. Tong
Download PDF Download RIS Download Bibtex

Abstract

Many nonlinear dynamical systems can present a challenge for the stability analysis in particular the estimation of the region of attraction of an equilibrium point. The usual method is based on Lyapunov techniques. For the validity of the analysis it should be supposed that the initial conditions lie in the domain of attraction. In this paper, we investigate such problem for a class of dynamical systems where the origin is not necessarily an equilibrium point. In this case, a small compact neighborhood of the origin can be estimated as an attractor for the system. We give a method to estimate the basin of attraction based on the construction of a suitable Lyapunov function. Furthermore, an application to Lorenz system is given to verify the effectiveness of the proposed method.

Go to article

Authors and Affiliations

M.A. Hammami
N.H. Rettab
Download PDF Download RIS Download Bibtex

Abstract

Electromagnetic mill installation for dry grinding represents a complex dynamical system that requires specially designed control system. The paper presents model-based predictive control which locates closed loop poles in arbitrary places. The controller performs as gain scheduling prototype where nonlinear model – artificial recurrent neural network, is parameterized with additional measurements and serves as a basis for local linear approximation. Application of such a concept to control electromagnetic mill load allows for stable performance of the installation and assures fulfilment of the product quality as well as the optimization of the energy consumption.

Go to article

Authors and Affiliations

Szymon Ogonowski
Dariusz Bismor
ORCID: ORCID
Zbigniew Ogonowski
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a model of an electromagnetic system with two levitating magnets is presented. Modeling was performed using the results of experiments. The data obtained make it possible to fit the magnetic forces between two magnets using a 5th order polynomial. The time series show that dry friction constitutes an important part of damping forces. The differential equations of motion consider strong nonlinearities of magnetic and damping forces. These terms cause the nonlinear hardening effect. The energy recovered by magnetic induction is dissipated in the resistors. Numerical simulations show that resistance has an impact on magnet dynamics and energy recovery. From the resonance characteristics obtained, optimal resistance is determined when energy recovery is the highest.
Go to article

Authors and Affiliations

Andrzej Mitura
1
ORCID: ORCID
Krzysztof Kecik
1
ORCID: ORCID

  1. Faculty of Mechanical Engineering, Department of Applied Mechanics, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

Although the study of oscillatory motion has a long history, going back four centuries, it is still an active subject of scientific research. In this review paper prospective research directions in the field of mechanical vibrations were pointed out. Four groups of important issues in which advanced research is conducted were discussed. The first are energy harvester devices, thanks to which we can obtain or save significant amounts of energy, and thus reduce the amount of greenhouse gases. The next discussed issue helps in the design of structures using vibrations and describes the algorithms that allow to identify and search for optimal parameters for the devices being developed. The next section describes vibration in multi-body systems and modal analysis, which are key to understanding the phenomena in vibrating machines. The last part describes the properties of granulated materials from which modern, intelligent vacuum-packed particles are made. They are used, for example, as intelligent vibration damping devices.
Go to article

Bibliography

  1. F.K. Shaikh and S. Zeadally, “Energy harvesting in wireless sensor networks: A comprehensive review”, Renew. Sustain. Energy Rev., vol. 55, pp. 1041–1054, 2016, doi: 10.1016/j.rser.2015.11.010.
  2.  M.T. Todaro et al., “Piezoelectric MEMS vibrational energy harvesters: Advances and outlook”, Microelectron. Eng., vol. 183– 184, pp. 23–36, 2017, doi: 10.1016/j.mee.2017.10.005.
  3.  F. Ali, W. Raza, X. Li, H. Gul, and K.H. Kim, “Piezoelectric energy harvesters for biomedical applications”, Nano Energy, vol. 57, pp. 879–902, 2019, doi: 10.1016/j.nanoen.2019. 01.012.
  4.  M.R. Sarker, S. Julai, M.F.M. Sabri, S.M. Said, M.M. Islam, and M. Tahir, “Review of piezoelectric energy harvesting system and application of optimization techniques to enhance the performance of the harvesting system”, Sensors Actuators, A Phys., vol. 300, p. 111634, 2019, doi: 10.1016/j.sna.2019.111634.
  5.  N. Tran, M. H. Ghayesh, and M. Arjomandi, “Ambient vibration energy harvesters: A review on nonlinear techniques for performance enhancement”, Int. J. Eng. Sci., vol. 127, pp. 162–185, 2018, doi: 10.1016/j.ijengsci.2018.02.003.
  6.  C. Wei and X. Jing, “A comprehensive review on vibration energy harvesting: Modelling and realization”, Renew. Sustain. Energy Rev., vol. 74, pp. 1–18, 2017, doi: 10.1016/j.rser.2017. 01.073.
  7.  T. Yildirim, M.H. Ghayesh, W. Li, and G. Alici, “A review on performance enhancement techniques for ambient vibration energy harvesters”, Renew. Sustain. Energy Rev., vol. 71, pp. 435– 449, 2017, doi: 10.1016/j.rser.2016.12.073.
  8.  H. Liu, J. Zhong, C. Lee, S.W. Lee, and L. Lin, “A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications”, Appl. Phys. Rev., vol. 5, no. 4, 2018, doi: 10.1063/1.5074184.
  9.  A. Erturk and D.J. Inman, “A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters”,  J. Vib. Acoust. Trans. ASME, vol. 130, no. 4, pp. 1–15, 2008, doi: 10.1115/1.2890402.
  10.  Y. Yang and L. Tang, “Equivalent circuit modeling of piezoelectric energy harvesters”, J. Intell. Mater. Syst. Struct., vol. 20, no. 18, pp. 2223–2235, 2009, doi: 10.1177/1045389X09351757.
  11.  L. Yu, L. Tang, and T. Yang, “Piezoelectric passive self-tuning energy harvester based on a beam-slider structure”, J. Sound Vib., vol. 489, p. 115689, 2020, doi: 10.1016/j.jsv.2020.115689.
  12.  M. Sayed, A.A. Mousa, and I. Mustafa, “Stability and bifurcation analysis of a buckled beam via active control”, Appl. Math. Model., vol. 82, pp. 649–665, 2020, doi: 10.1016/j.apm.2020.01.074.
  13.  S. Zhou, J. Cao, and J. Lin, “Theoretical analysis and experimental verification for improving energy harvesting performance of nonlinear monostable energy harvesters”, Nonlinear Dyn., vol. 86, no. 3, pp. 1599–1611, 2016, doi: 10.1007/s11071-0162979-7.
  14.  H. T. Nguyen, D. Genov, and H. Bardaweel, “Mono-stable and bi-stable magnetic spring based vibration energy harvesting systems subject to harmonic excitation: Dynamic modeling and experimental verification”, Mech. Syst. Signal Process., vol. 134, p. 106361, 2019, doi: 10.1016/j.ymssp.2019.106361.
  15.  T. Huguet, A. Badel, O. Druet, and M. Lallart, “Drastic bandwidth enhancement of bistable energy harvesters: Study of subharmonic behaviors and their stability robustness”, Appl. Energy, vol. 226, pp. 607–617, 2018, doi: 10.1016/j.apenergy.2018. 06.011.
  16.  H. Wang and L. Tang, “Modeling and experiment of bistable two-degree-of-freedom energy harvester with magnetic coupling”, Mech. Syst. Signal Process., vol. 86, pp. 29–39, 2017, doi: 10.1016/j.ymssp.2016.10.001.
  17.  Y. Zhang, Y. Leng, S. Fan, “The Accurate Analysis of Magnetic Force of Bi-stable Piezoelectric Cantilever Energy Harvester”, presented at the ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference, Cleveland, Ohio, USA, 2017, doi: 10.1115/ DETC2017-67168.
  18.  T. Tan, Z. Yan, K. Ma, F. Liu, L. Zhao, and W. Zhang, “Nonlinear characterization and performance optimization for broadband bistable energy harvester”, Acta Mech. Sin. Xuebao, vol. 36, no. 3, pp. 578–591, 2020, doi: 10.1007/s10409-020-00946-3.
  19.  K. Wang, X. Dai, X. Xiang, G. Ding, and X. Zhao, “Optimal potential well for maximizing performance of bi-stable energy harvester”, Appl. Phys. Lett., vol. 115, no. 14, 2019, doi: 10.1063/1.5095693.
  20.  V. Shah, R. Kumar, M. Talha, and J. Twiefel, “Numerical and experimental study of bistable piezoelectric energy harvester”, Integr. Ferroelectr., vol. 192, no. 1, pp. 38–56, 2018, doi: 10.1080/ 10584587.2018.1521669.
  21.  T. Yang and Q. Cao, “Dynamics and high-efficiency of a novel multi-stable energy harvesting system”, Chaos Solitons Fractals, vol. 131, p. 109516, 2020, doi: 10.1016/j.chaos.2019. 109516
  22.  Z. Zhou, W. Qin, and P. Zhu, “Improve efficiency of harvesting random energy by snap-through in a quad-stable harvester”, Sens. Actuators, A, vol. 243, pp. 151–158, 2016, doi: 10.1016/ j.sna.2016.03.024.
  23.  M. Panyam and M.F. Daqaq, “Characterizing the effective bandwidth of tri-stable energy harvesters”, J. Sound Vib., vol. 386, pp. 336–358, 2017, doi: 10.1016/j.jsv.2016.09.022.
  24.  Y. Leng, D. Tan, J. Liu, Y. Zhang, and S. Fan, “Magnetic force analysis and performance of a tri-stable piezoelectric energy harvester under random excitation”, J. Sound Vib., vol. 406, pp. 146–160, 2017, doi: 10.1016/j.jsv.2017.06.020.
  25.  M. Lallart, S. Zhou, Z. Yang, L. Yan, K. Li, and Y. Chen, “Coupling mechanical and electrical nonlinearities: The effect of synchronized discharging on tristable energy harvesters”, Appl. Energy, vol. 266, no. January, p. 114516, 2020, doi: 10.1016/ j.apenergy.2020.114516.
  26.  J. Wang and Z. Wang, “A double bi-stable energy harvester for enhanced ability of bi-stable energy harvesting from random vibration”, J. Appl. Sci. Eng., vol. 20, no. 3, pp. 387–392, 2017, doi: 10.6180/jase.2017.20.3.13.
  27.  G. Wang, W. Liao, B. Yang, X. Wang, W. Xu, and X. Li, “Dynamic and energetic characteristics of a bistable piezoelectric vibration energy harvester with an elastic magnifier”, Mech. Syst. Signal Process., vol. 105, pp. 427–446, 2018, doi: 10.1016/ j.ymssp.2017.12.025.
  28.  Z. Zhou, W. Qin, W. Du, P. Zhu, and Q. Liu, “Improving energy harvesting from random excitation by nonlinear flexible bistable energy harvester with a variable potential energy function”, Mech. Syst. Signal Process., vol. 115, pp. 162–172, 2019, doi: 10.1016/j.ymssp.2018.06.003.
  29.  X. Li et al., “Broadband spring-connected bi-stable piezoelectric vibration energy harvester with variable potential barrier”, Results Phys., vol. 18, no. May, p. 103173, 2020, doi: 10.1016/ j.rinp.2020.103173.
  30.  S. Zhou, J. Cao, D.J. Inman, J. Lin, S. Liu, and Z. Wang, “Broadband tristable energy harvester: Modeling and experiment verification”, Appl. Energy, vol. 133, pp. 33–39, 2014, doi: 10.1016/j.apenergy.2014.07.077.
  31.  Z. Zhou, W. Qin, Y. Yang, and P. Zhu, “Improving efficiency of energy harvesting by a novel penta-stable configuration”, Sensors Actuators A., vol. 265, pp. 297–305, 2017, doi: 10.1016/ j.sna.2017.08.039.
  32.  D. Huang, S. Zhou, and G. Litak, “Theoretical analysis of multistable energy harvesters with high-order stiffness terms”, Commun. Nonlinear Sci. Numer. Simul., vol. 69, pp. 270–286, 2019, doi: 10.1016/j.cnsns.2018.09.025.
  33.  C. Lan and W. Qin, “Enhancing ability of harvesting energy from random vibration by decreasing the potential barrier of bistable harvester”, Mech. Syst. Signal Process., vol. 85, pp. 71–81, 2017, doi: 10.1016/j.ymssp.2016.07.047.
  34.  M. Ostrowski, B. Błachowski, M. Bochen´ski, D. Piernikarski, P. Filipek, and W. Janicki, “Design of nonlinear electromagnetic energy harvester equipped with mechanical amplifier and spring bumpers”, Bull. Polish Acad. Sci. Tech. Sci., vol. 68, no. 6, pp. 1373–1383, 2020, doi: 10.24425/bpasts.2020.135384.
  35.  D. Tan, Y.G. Leng, and Y.J. Gao, “Magnetic force of piezoelectric cantilever energy harvesters with external magnetic field”, Eur. Phys. J. Spec. Top., vol. 224, no. 14–15, pp. 2839–2853, 2015, doi: 10.1140/epjst/e2015-02592-6.
Go to article

Authors and Affiliations

Xinxin Li
1
Kexue Huang
1
Zhilin Li
1
Jiangshu Xiang
1
Zhenfeng Huang
1
Hanling Mao
1
Yadong Cao
1

  1. College of Mechanical Engineering, Guangxi University, Nanning, China
Download PDF Download RIS Download Bibtex

Abstract

The longitudinal automatic carrier landing system (ACLS) control law is designed based on nonlinear dynamic inversion (NDI), which can reject air wake, decouple lateral states, and track the dynamic desired touchdown point (DTP). First of all, the nonlinear landing model of F/A−18 aircraft in the final approach is established, in which the parameters of the aerodynamic, control surfaces, and limited states are acquired. Second, the strategy of tracking the desired longitudinal trajectory through pitch angle control is adopted. The automatic power compensation system (APCS), pitch angle rate, pitch angle, and vertical position control loops are developed based on the adaptive NDI. The stable analysis and the principal description are derived in detail. Deck motion compensation (DMC) algorithm is designed by frequency response method. Third, the control parameters are optimized through the genetic algorithm. A fitness function integrated with velocity, angle of attack (AOA), pitch rate, pitch angle, and vertical position of the aircraft are proposed. Finally, integrated simulations are conducted on a semi-physical simulation platform. The results indicate that the adopted automatic landing control law can achieve both excellent performance and the ability to reject the air wake and lateral coupling.
Go to article

Bibliography

  1.  M. Ryota and S. Shinji, “Modeling of pilot landing approach control using stochastic switched linear regression model”, J. Aircr. 47(5), 1554–1558 (2010).
  2.  J. Tian, Y. Dai, H. Rong, and T.D. Zhao, “Hybrid safety analysis method based on SVM and RST: An application to carrier landing of aircraft”, Saf. Sci. 80, 56–65 (2015).
  3.  L.P. Wang, Q.D. Zhu, Z. Zhang, and R. Dong. “Modeling pilot behaviors based on discrete–time series during carrier-based aircraft landing”, J. Aircr. 53(6), 1922–1931 (2016).
  4.  J.M. Urnes and R.K. Hess, “Development of the F/A 18A automatic carrier landing system”, J. Guid. 8(3), 289-295 (1985).
  5.  Z.Y. Guan, Y.P. Ma, and Z.W. Zheng, “Prescribed performance control for automatic carrier landing with disturbance”, Nonlinear Dyn. 94(2), 1335–1349 (2018).
  6.  Z.Y. Zhen, S.Y. Jiang, and K. Ma, “Automatic carrier landing control for unmanned aerial vehicles based on preview control and particle filtering”, Aerosp. Sci. Technol. 81, 99–107 (2018).
  7.  Z.Y. Zhen, S.Y. Jiang, and J. Jiang, “Preview control and particle filtering for automatic carrier landing”, IEEE Trans. Aerosp. Electron. Syst. 54(6), 2662–2674 (2018).
  8.  R. Lungu and M. Lungu, “Design of automatic landing systems using the H-inf control and the dynamic inversion”, J. Dyn. Syst. Meas. Control- Trans. ASME. 138(2), 1–5 (2016).
  9.  R. Lungu and M. Lungu, “Automatic Landing system using neural networks and radio-technical subsystems”, Chin. J. Aeronaut. 30(1), 399–411 (2017).
  10.  M. Lungu and R. Lungu, “Automatic control of aircraft lateraldirectional motion during landing using neural networks and radio-technical subsystems”, Neurocomputing. 171, 471–481 (2016).
  11.  Q. Bian, B. Nener, T. Li, and X.M. Wang, “Multimodal control parameter optimization for aircraft longitudinal automatic landing via the hybrid particle swarm-BFGS algorithm”, Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng. 233(12), 4482–4491 (2019).
  12.  F.Y. Zheng, Z.Y. Zhen, and H.J. Gong, “Observer-based backstepping longitudinal control for carrier-based UAV with actuator faults”, J. Syst. Eng. Electron. 28(2), 322–337 (2017).
  13.  Z.Y. Zhen, C.J. Yu, and S.Y. Jiang, “Adaptive super-twisting control for automatic carrier landing of aircraft”, IEEE Trans. Aerosp. Electron. Syst. 56(2), 987–994 (2020).
  14.  Z.Y. Zhen, G. Tao, and C.J. Yu, “A multivariable adaptive control scheme for automatic carrier landing of UAV”, Aerosp. Sci. Technol. 92, 714–721 (2019).
  15.  L.P. Wang, Z. Zhang, Q.D. Zhu, and R. Dong, “Longitudinal automatic carrier landing system guidance law using model predictive control with an additional landing risk term”, Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng. 233(3), 1–17 (2019).
  16.  L.P. Wang, Z. Zhang, and Q.D. Zhu, “Automatic Flight Control Design Considering Objective and Subjective Risks during Carrier Landing”, Proc. Inst. Mech. Eng. Part I-J Syst Control Eng. 234(4), 446–461 (2020).
  17.  L.P. Wang, Z. Zhang, Q.D. Zhu, X.W. Jiang, “Lateral autonomous carrier-landing control with high-dimension landing risks consideration”, Aircr. Eng. Aerosp. Technol. 92(6), 837– 850 (2020).
  18.  T. Woodbury and J. Valasek, “Synthesis and flight test of an automatic landing controller using quantitative feedback theory”, J. Guid. Control Dyn. 39(9), 1994–2010 (2016).
  19.  B. Xu, D.W. Wang, Y.M. Zhang, and Z.K. Shi, “DOB-based neural control of flexible hypersonic flight vehicle considering wind effects”, IEEE Trans. Ind. Electron. 64(11), 8676–8685 (2017).
  20.  D. Gawel, M. Nowak, H. Hausa, and R. Roszak, “New biomimetic approach to the aircraft wing structural design based on aeroelastic analysis”, Bull. Pol. Ac.: Tech. 65(5), 741–750 (2017).
  21.  J.N. Li and H.B. Duan, “Simplified brain storm optimization approach to control parameter optimization in F/A 18 automatic carrier landing system”, Aerosp. Sci. Technol. 42, 187–195 (2015).
  22.  R. Dou and H.B. Duan, “Levy flight based pigeon-inspired optimization for control parameters optimization in automatic carrier landing system”, Aerosp. Sci. Technol. 61, 11–20 (2017).
  23.  K. Lu and C.S. Liu, “A L-1 adaptive control scheme for UAV carrier landing using nonlinear dynamic inversion”, Int. J. Aerosp. Eng. 1–9 (2019).
  24.  M. Brodecki and K. Subbarao. Autonomous formation flight control system using in-flight sweet-spot estimation. J. Guid. Control Dyn. 38(6), 1083–1096 (2015).
  25.  H. Bouadi, F.M. Camino, and D. Choukroun, “Space–Indexed Control for Aircraft Vertical Guidance with Time Constraint”, J. Guid. Control Dyn. 37(4), 1103–1113 (2014).
  26.  P.K. Menon, S.S. Vaddi, and P. Sengupta, “Robust landingguidance law for impaired aircraft”, J. Guid. Control Dyn. 35(6), 1865−1877 (2012).
  27.  W.H. Chen, “Nonlinear Disturbance observer-enhanced dynamic inversion control of missiles”, J. Guid. Control Dyn. 26(1), 161–166 (2003).
  28.  I. Hameduddin and A.H. Bajodah, “Nonlinear generalised dynamic inversion for aircraft manoeuvring control”, Int. J. Control. 85(4), 437–450 (2012).
  29.  R. Lungu and M. Lungu, “Design of automatic landing systems using the H-inf control and the dynamic inversion”, J. Dyn. Syst. Meas. Control- Trans. ASME. 138(2), 1–5 (2016).
  30.  M. Lungu and R. Lungu, “Landing auto-pilots for aircraft motion in longitudinal plane using adaptive control laws based on neural networks and dynamic inversion”, Asian J. Control. 19(1), 302–315 (2017).
  31.  R. Lungu and M. Lungu, “Automatic control of aircraft in lateral-directional plane during landing”, Asian J. Control. 18(2), 433–446 (2016).
  32.  A. Chakraborty, P. Seiler, and G. J. Balasz, “Applications of linear and nonlinear robustness analysis techniques to the F/A-18 flight control laws”, AIAA Guidance, Navigation, and Control conference. Chicago, USA, 2009, pp.10–13.
  33.  A. Chakraborty, P. Seiler, and G. J. Balas, “Susceptibility of F/A 18 flight controllers to the falling-leaf mode: nonlinear analysis”, J. Guid. Control Dyn. 34(1), 57–72 (2011).
  34.  J.M. Urnes, and R.K. Hess, “Development of the F/A-18A Automatic Carrier Landing System”, J. Guid. 8(3), 289–295 (1985).
Go to article

Authors and Affiliations

Lipeng Wang
1
ORCID: ORCID
Zhi Zhang
1
Qidan Zhu
1
Zixia Wen
2

  1. College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, 150001, China
  2. AVIC Xi’an Flight Automatic Control Research Institute, Xi’an, 710065, China
Download PDF Download RIS Download Bibtex

Abstract

Management and Production Engineering Review (MPER) is a peer-refereed, international, multidisciplinary journal covering a broad spectrum of topics in production engineering and management. Production engineering is a currently developing stream of science encompassing planning, design, implementation and management of production and logistic systems. Orientation towards human resources factor differentiates production engineering from other technical disciplines. The journal aims to advance the theoretical and applied knowledge of this rapidly evolving field, with a special focus on production management, organisation of production processes, management of production knowledge, computer integrated management of production flow, enterprise effectiveness, maintainability and sustainable manufacturing, productivity and organisation, forecasting, modelling and simulation, decision making systems, project management, innovation management and technology transfer, quality engineering and safety at work, supply chain optimization and logistics. Management and Production Engineering Review is published under the auspices of the Polish Academy of Sciences Committee on Production Engineering and Polish Association for Production Management. The main purpose of Management and Production Engineering Review is to publish the results of cutting-edge research advancing the concepts, theories and implementation of novel solutions in modern manufacturing. Papers presenting original research results related to production engineering and management education are also welcomed. We welcome original papers written in English. The Journal also publishes technical briefs, discussions of previously published papers, book reviews, and editorials. Letters to the Editor-in-Chief are highly encouraged.
Go to article

Authors and Affiliations

Saltanat BEISEMBINA
Mamyrbek BEISENBI
Nurgul KISSIKOVA
Aliya Shukirova

This page uses 'cookies'. Learn more