Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a method for quantitative assessment of the mechanisms of nucleation and granules growth by layering in the process of bed wetting during periodic disc granulation. This study included two initial, consecutive stages of a process with defined time courses. The first phase was a time period, in which only formation of new nuclei took place, while in the second stage simultaneous nucleation and growth of granules as a result of sticking raw material grains to pre-existing nuclei occurred. Different kinds of binding liquid were used for bed wetting in each phase. In the first phase, an aqueous solution of dye was used, and pure distilled water in the second stage. The contribution of particular mechanisms to the formation of agglomerates at different time points within the second phase of the process was determined in this study. To do that the results of bed granulometric analysis, mass balance of size fractions and the analysis of contents of a marker (dye) delivered to the bed with the binding liquid during the first phase in agglomerates were used. To assess the concentration of the dye in different size fractions of the batch, spectrophotometric analysis was utilised. The study was performed using UV-VIS JASCO V-630 spectrophotometer equipped with an integrating sphere. The sieve analysis, spectrophotometric studies and mass balance were used to determine changes in the weight of the dye containing nuclei and of the nuclei containing no dye. The aforementioned analyses were also used to assess changes in the weight of formed granules and of raw material particles attached to nuclei during simultaneous nucleation and growth of granules.

Go to article

Authors and Affiliations

Andrzej Obraniak
Tadeusz Gluba
Download PDF Download RIS Download Bibtex

Abstract

Eutectoid growth, as the important reaction mechanism of the carbon steel heat treatment, is the basis to control the microstructure and

performance. At present, most studies have focused on lamellar growth, and did not consider the nucleation process. Mainly due to the

nucleation theory is inconclusive, a lot of research can support their own theory in a certain range. Based on the existing nucleation theory,

this paper proposes a cooperative nucleation model to simulate the nucleation process of eutectoid growth. In order to ensure that the

nucleation process is more suitable to the theoretical results, different correction methods were used to amend the model respectively. The

results of numerical simulation show that when the model is unmodified, the lateral growth of single phase is faster than that of

longitudinal growth, so the morphology is oval. Then, the effects of diffusion correction, mobility correction and ledges nucleation

mechanism correction on the morphology of nucleation and the nucleation rate were studied respectively. It was found that the

introduction of boundary diffusion and the nucleation mechanism of the ledges could lead to a more realistic pearlite.

Go to article

Authors and Affiliations

Dongqiao Zhang
Yajun Yin
Jianxin Zhou
Zhixin Tu
Download PDF Download RIS Download Bibtex

Abstract

The article discusses issues related to the melting of grey and ductile cast iron in terms of metallurgical quality. The derivative and thermal analysis (DTA) was used to assess this quality. The article presents the results of research carried out in industrial conditions and analysed by the Itaca system. In the paper, the effect of the furnace type, the charge materials and the inoculation process on the parameters characterising the cast iron being melted was analysed. The most important of these are the minimum eutectic temperature (Te min), the liquidus temperature (T liquidus) and the nucleation rate. The results of the research and calculations are shown in graphs and as dependencies. Some of DTA results were compared to the microstructure analysis results. The article shows that the derivative and thermal analysis is a very effective tool in the assessment of the metallurgical quality of cast iron. It is a very good addition to chemical analysis. Based on the results of the research, it was concluded that a very high correlation exists between the rate of nucleation (DTA) and the number of graphite nuclei (microstructure analysis). Furthermore, it was also found that an improvement in nucleation could be achieved by ensuring a high value of carbon equivalent (CE) and, above all, by conducting the primary and secondary inoculation processes, respectively.
Go to article

Bibliography

[1] Stefanescu, D.M., Suarez, R. & Kim S.B, (2020). 90 years of thermal analysis as a control tool in the melting of cast iron. China Foundry. 17(2), 69-84. https://doi.org/10.1007/s41230-020-0039-x.
[2] Jura, S., Sakwa, J. & Borek, K. (1980). Application of thermal and differential analysis for determination of chemical composition parameters. Krzepnięcie Metali i Stopów. 3, 16-24. (in Polish).
[3] Jura, S., Sakwa, J. & Borek, K. (1980). Differential analysis of solidification and crystallization processes of gray cast iron. Krzepnięcie Metali i Stopów. 3, 25-35. (in Polish).
[4] Jura, Z. & Jura, S. (1990). Calorimetric curve and heat source in thermal and derivational analysis of cast iron solidification process. Krzepnięcie Metali i Stopów. 16, 126-139. (in Polish).
[5] Jura, Z. & Jura, S. (1996). The theory of the TDA method in the study of Al alloys. Krzepnięcie Metali i Stopów. 28, 57-88. (in Polish).
[6] Jura, S., Studnicki, A., Przybył, M. & Jura, Z. (2001). Application of the ATD method to assess the quality of ductile cast iron. Archiwum Odlewnictwa. 1(1), 93-102. (in Polish).
[7] Gawroński, J., Szajnar, J., Jura, Z. & Studnicki, A. (2004). Professor Stanisław Jura, creator of the theory and industrial applications of diagnostics and wear of metals and alloys. Archiwum Odlewnictwa. 4(SI 16), 1-74. (in Polish).
[8] Pietrowski, S. & Władysiak, R. (1996). TDA Inspection of piston silumins. Krzepnięcie Metali i Stopów. 28, 160-173. (in Polish).
[9] Pietrowski, S. & Gumienny, G. (2002). Methodology for preparing the quality assessment of ductile cast iron using the TDA method. Archiwum Odlewnictwa. 2(6). (in Polish).
[10] Pietrowski, S. & Gumienny, G. (2002). Evaluation of the quality of ductile cast iron EN-GJS-400-15 by the TDA method. Archiwum Odlewnictwa. 2(6), 257-268. (in Polish).
[11] Chisamera, M., Riposan, I., Stan, S., Stefan, E. & Costache, G. (2009). Thermal analysis control of in-mould and ladle inoculated grey cast irons. China Foundry. 6(2), 145-151.
[12] Erturka, S.O., Kumruoglub, L.C., Ozel, A. (2017). Determination of feederless casting limits by thermal analysis in cast iron. Acta Physica Polonica A. 131(3), 370-373. DOI: 10.12693/APhysPolA.131.370.
[13] Seidu, S.O. (2013). Thermal analysis of preconditioned ductile cast iron. International Journal of Current Engineering and Technology. 3(3), 813-818. ISSN 2277-4106.
[14] Cojocaru, A.M., Riposan, I. & Stan, S. (2019). Solidification influence in the control of inoculation effects in ductile cast irons by thermal analysis. Journal of Thermal Analysis and Calorimetry.138, 2131-2143. https://doi.org/10.1007/s10973-019-08808-2.
[15] Petrus, Ł., Bulanowski, A., Kołakowski, J., Brzeżański, M., Urbanowicz, M., Sobieraj, J., Matuszkiewicz, G., Szwalbe, L., Janerka, K. (2020). The influence of selected melting parameters on the physical and chemical properties of cast iron. Archives of Foundry Engineering. 20(1), 105-110. DOI: 10.24425/afe.2020.131290.
[16] Petrus, Ł., Bulanowski, A., Kołakowski, J., Sobieraj, J., Paruch, T., Urbanowicz, M., Brzeżański, M., Burdzy, D. & Janerka. K. (2021). Importance of TDA thermal analysis in an automated metallurgical process. Journal of Casting & Materials Engineering. 5(4), 89-93. https://doi.org/10.7494/ jcme.2021.5.4.89.
[17] ProserviceTech. Retrieved June, 30, 2022 from http://www.proservicetech.it/itacax-thermal-analysis-final-iron-quality-control/.
[18] Novacast. Retrieved June, 30, 2022 from https://www.novacast.se/product/atas/.
[19] Heraeus. Retrieved June, 30, 2022 from https://www.heraeus.com/en/hen/products_and_solutions_hen/foundry/thermal_analysis/thermal_analysis.html.
[20] Vesuvius. Retrieved June, 30, 2022 from https://www.vesuvius.com/content/dam/vesuvius/corporate/Our-solutions/our-solutions-master-english/foundry/Newsletter/Issue2/FP-new-issues/FERROLAB%20V.pdf.

Go to article

Authors and Affiliations

J. Kołakowski
1
ORCID: ORCID
M. Brzeżański
1
ORCID: ORCID
D. Burdzy
1
ORCID: ORCID
J. Sobieraj
1
M. Urbanowicz
1
T. Paruch
1
K. Janerka
2
ORCID: ORCID

  1. “Śrem” Iron Foundry Sp. z o.o., ul. Staszica 1, 63-100 Śrem, Poland
  2. Department of Foundry Engineering, Silesian University of Technology, ul. Towarowa 7, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Nanoparticles are very fascinating area of science not only due to their unique properties but also possibility of producing new more complex materials, which may find an application in modern chemistry, engineering and medicine. In process of nanoparticles formation very important aspect is a rate of individual stage i.e. reduction, nucleation and autocatalytic growth, because this knowledge allows for proper materials design, morphology manipulation, stability. The last one aspect can be realized using proper electrostatic, steric and electrosteric stabilization. However until now nobody reports and measures kinetic rates of all stages during process of particles formation in the presence of steric stabilizers. Thus, the main contribution of this paper is determination of individual rate constants for nanoparticles formation in the presence of steric stabilizers and their comparison to the system without stabilizer. For this purpose, an aqueous solution of Au(III) and Pt(IV) ions were mixed with steric stabilizers like PVA and PVP, and reduced using L-ascorbic acid as a mild and sodium borohydride as a strong reductant. As a results stable nanoparticles were formed and process of their formation was registered spectrophotometrically. From obtained kinetic curves the values of observed rate constants for reduction metal ions, slow nucleation and fast autocatalytic growth were determined using Watzky-Finke model. It was found that the addition of polymer affects the rate of the individual stages. The addition of steric stabilizers to gold ions reduced with L-ascorbic acid causes that the process of nucleation and autocatalytic growth slows down and the value of observed rate constants for nucleation changes from 3.79·10–3 (without polymer) to 7.15·10–5s–1 (with PVA) and for growth changes from 1.15·103 (without polymer) to 0.48·102s–1M–1 (with PVA). However, the rate of the reduction reaction of Au(III) ions is practically unchanged. In case of using strong reductant the addition of polymer effects on the shape of kinetic curve for reduction of Au(III) and it suggests that mechanism is changed. In case of Pt(IV) ions reduction with L-ascorbic acid, the process speeds up a little when PVA was added. Determined values of observed rate constants for nucleation and growth platinum nanoparticles decrease twice comparing to the system without polymer. The reduction of Pt(IV) ions with sodium borohydride accelerates when PVP was added and slows down when PVA was used. Moreover, the size of obtained colloidal gold and platinum was also analysed using DLS method. Obtained results (rate constants) may be useful in the process of nanomaterials synthesis, in particular in microflow.

Go to article

Authors and Affiliations

M. Luty-Błocho
Download PDF Download RIS Download Bibtex

Abstract

Cast irons are good examples of materials which are more sensitive to chemical composition and production conditions. In this research to improve casting quality, solidification and nucleation process in grey cast iron was investigate. In particular, attempts have been made to rationalize variation in eutectic cells with nucleation sites and eutectic solidification undercooling. Four castings with different diameter and similar chemical composition and pouring temperature and different inoculant percentage was casted. The cooling curve and maximum and minimum undercooling for each castings was measured. Also optical metallography and image analyzer has been used to determine the average eutectic cells diameter, and linear and surface densities, and volume density was calculated. The results of this research show a competitive behavior between nucleation sites and eutectic undercooling. Higher nucleation sites and higher eutectic undercooling cause higher eutectic cell density. But increasing nucleation sites by introducing inoculants to molten metal, is accompanied with reduction in eutectic undercooling. It means that inoculation and undercooling have opposite effect on each other. So, to achieve maximum cell density, it is necessary to create an optimization between these parameters.

Go to article

Authors and Affiliations

N. Arab
Download PDF Download RIS Download Bibtex

Abstract

The orientations of recrystallization nuclei and their adjacent as-deformed regions have been characterised in deformed single crystals of different metals (Ag, Cu, Cu-2%wt.Al and Cu-8%wt.Al) in which twinning and/or shear banding occur. {112}<111> oriented crystals of these metals have been compressed to different strains, then lightly annealed, and the crystallographic aspects of the recrystallization process along shear bands examined by local orientation measurement in TEM and SEM. The results clearly show the existence of a well-defined crystallographic relation between the local deformation substructure and the first recrystallized areas of uniform orientation. The first-formed nuclei always exhibit near 25–400(<111>–<112>) type misorientations, in the direction of highest growth, with respect to one of the two main groups of the deformation texture components. The rotation axes can be correlated with the slip plane normal of highest activity. As recrystallization proceeds, recrystallization twinning develops strongly and facilitates rapid growth; the first and higher generations of twins then tend to obscure the initial primary crystallographic relation between the shear bands and recrystallization nuclei .

Go to article

Authors and Affiliations

H. Paul
J.H. Driver
Download PDF Download RIS Download Bibtex

Abstract

Reduction of three industrial nickel oxides (Goro, Tokyo and Sinter 75) with a hydrogen bearing gas was revisited in the temperature interval from 523 to 673 K (250 to 400°C). A pronounced incubation period is observed in the temperature interval tested. This period decreases as the reduction temperature increases. Thermogravimetric data of these oxides were fitted using the Avrami-Erofeyev kinetic model. The reduction of these oxides is controlled by a nucleation and growth mechanism of metallic nickel over the oxides structure. Rate kinetic constants were re-evaluated and the activation energy for the reduction of these oxides was re-calculated.
Go to article

Authors and Affiliations

G. Plascencia

This page uses 'cookies'. Learn more