Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Beamforming is an advanced signal processing technique used in sensor arrays for directional signal transmission

or reception. The paper deals with a system based on an ultrasound transmitter and an array of

receivers, to determine the distance to an obstacle by measuring the time of flight and – using the phase

beamforming technique to process the output signals of receivers for finding the direction from which the

reflected signal is received – locates the obstacle. The embedded beam-former interacts with a PID-based

line follower robot to improve performance of the line follower navigation algorithm by detecting and

avoiding obstacles. The PID (proportional-integral-derivative) algorithm is also typically used to control

industrial processes. It calculates the difference between a measured value and a desired set of points, then

attempts to minimize the error by adjusting the output. The overall navigation system combines a PID-based

trajectory follower with a spatial-temporal filter (beamformer) that uses the output of an array of sensors to

extract signals received from an obstacle in a particular direction in order to guide an autonomous vehicle

or a robot along a safe path.

Go to article

Authors and Affiliations

Patrick Kapita Mvemba
Aimé Lay-Ekuakille
Simon Kidiamboko
Md Zia Uhr Rahman
Download PDF Download RIS Download Bibtex

Abstract

Manipulators mounted on small satellites will be used to perform on-orbit servicing, removal of space debris, and assembly of large orbital structures. During such operations, the manipulator must avoid collisions with the target object or the elements of the assembled structure. Planning of the manipulator trajectory is one of the major challenges for the proposed missions because the motion of the manipulator influences the position and orientation of the satellite. Thus, the dynamic equations of motion must be used during trajectory planning. Methods developed for fixed-base manipulators working on Earth cannot be directly applied. In this paper, we propose a new obstacle vector field (OVF) method for collision-free trajectory planning of a manipulator mounted on a free-floating satellite. The OVF method is based on a vector field that surrounds the obstacles and generates virtual forces that drive the manipulator around the obstacles. The OVF method is compared with the classical artificial potential field (APF) method and the rapidly exploring random trees (RRT) method. In the presented examples the trajectory planning problem is solved for a planar case in which the satellite is equipped with a 2 DoF manipulator. It is shown that the OVF method is more efficient than the APF method, i.e., it allows us to solve the trajectory planning problem in some of the cases, in which the APF method is unsuccessful. The time required to find the solution with the use of the OVF method is shorter than the time needed by the APF and the RRT method.
Go to article

Authors and Affiliations

Tomasz Rybus
1
ORCID: ORCID

  1. Centrum Badań Kosmicznych Polskiej Akademii Nauk (CBK PAN), ul. Bartycka 18A, 00-716 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents the main functions of aesthetic values (beauty, simplicity, symmetry) in the process of formulating, evaluating and accepting scientific theories in the work of physicist: 1) they motivate to undertake scientific research; (2) have a heuristic role which enables the direction of the search for a new theory to be selected; (3) are a criterion for choosing between empirically equivalent theories in the absence of empirical evidences and (4) sometimes constitute an epistemological obstacle. The basic thesis of the work is that aesthetic values, in addition to positive functions, also play a negative role in science, hindering the acceptance of new theories or leading to inefficient research. Too much weight on the aesthetic side of theory can pose a threat to the objectivity of scientific cognition.

Go to article

Authors and Affiliations

Magdalena Łata
Andrzej Łukasik
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes an autonomous obstacle avoidance method combining improved A-star (A*) and improved artificial potential field (APF) to solve the planning and tracking problems of autonomous vehicles in a road environment. The A*APF algorithm to perform path planning tasks, and based on the longitudinal braking distance model, a dynamically changing obstacle influence range is designed. When there is no obstacle affecting the controlled vehicle, the improved A* algorithm with angle constraint combined with steering cost can quickly generate the optimal route and reduce turning points. If the controlled vehicle enters the influence domain of obstacle, the improved artificial potential field algorithm will generate lane changing paths and optimize the local optimal locations based on simulated annealing. Pondering the influence of surrounding participants, the four-mode obstacle avoidance process is established, and the corresponding safe distance condition is analyzed. A particular index is introduced to comprehensively evaluate speed, risk warning, and safe distance factors, so the proposed method is designed based on the fuzzy control theory. In the tracking task, a model predictive controller in the light of the kinematics model is devised to make the longitudinal and lateral process of lane changing meet comfort requirements, generating a feasible autonomous lane-change path. Finally, the simulation was performed in the Matlab/Simulink and Carsim combined environment. The proposed fusion path generation algorithm can overcome the shortcomings of the traditional single method and better adapt to the dynamic environment. The feasibility of the obstacle avoidance algorithm is verified in the three-lane simulation scenario to meet safety and comfort requirements.
Go to article

Authors and Affiliations

Yubin Qian
1
ORCID: ORCID
Hongtao Sun
1
ORCID: ORCID
Song Feng
1
ORCID: ORCID

  1. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, China
Download PDF Download RIS Download Bibtex

Abstract

Adaptive locomotion over difficult or irregular terrain is considered as a superiority feature of walking robots over wheeled or tracked machines. However, safe foot positioning, body posture and stability, correct leg trajectory, and efficient path planning are a necessity for legged robots to overcome a variety of possible terrains and obstacles.Without these properties, anywalking machine becomes useless. Energy consumption is one of the major problems for robots with a large number of Degrees of Freedom (DoF). When considering a path plan ormovement parameters such as speed, step length or step height, it is important to choose the most suitable variables to sustain long battery life and to reach the objective or complete the task successfully.We change the settings of a hexapod robot leg trajectory for overcoming small terrain irregularities by optimizing consumed energy and leg trajectory during each leg transfer. The trajectory settings are implemented as a part of hexapod robot simulation model and tested through series of experiments with various terrains of differing complexity and obstacles of various sizes. Our results show that the proposed energy-efficient trajectory transformation is an effective method for minimizing energy consumption and improving overall performance of a walking robot.

Go to article

Authors and Affiliations

Mindaugas Luneckas
Tomas Luneckas
Dainius Udris
Darius Plonis
Rytis Maskeliunas
Robertas Damasevicius
Download PDF Download RIS Download Bibtex

Abstract

The article describes motion planning of an underwater redundant manipulator with revolute joints moving in a plane under gravity and in the presence of obstacles. The proposed motion planning algorithm is based on minimization of the total energy in overcoming the hydrodynamic as well as dynamic forces acting on the manipulator while moving underwater and at the same time, avoiding both singularities and obstacle. The obstacle is considered as a point object. A recursive Lagrangian dynamics algorithm is formulated for the planar geometry to evaluate joint torques during the motion of serial link redundant manipulator fully submerged underwater. In turn the energy consumed in following a task trajectory is computed. The presence of redundancy in joint space of the manipulator facilitates selecting the optimal sequence of configurations as well as the required joint motion rates with minimum energy consumed among all possible configurations and rates. The effectiveness of the proposed motion planning algorithm is shown by applying it on a 3 degrees-of-freedom planar redundant manipulator fully submerged underwater and avoiding a point obstacle. The results establish that energy spent against overcoming loading resulted from hydrodynamic interactions majorly decides the optimal trajectory to follow in accomplishing an underwater task.
Go to article

Bibliography

[1] D.E. Whitney. Resolved motion rate control of manipulators and human prostheses. IEEE Transaction on Man-Machine System, 10(2):47–53,1969. doi: 10.1109/TMMS.1969.299896.
[2] Z. Shiller and H-H. Lu. Computation of path constrained time optimal motions with dynamic singularities. Journal of Dynamic Systems, Measurement, and Control, 114(1):34–40,1992. doi: 10.1115/1.2896505.
[3] N. Faiz and S.K. Agrawal.Trajectory planning of robots with dynamics and inequalities. In Proceedings IEEE International Conference on Robotics and Automation, pages 3976–3982, 2000. doi: 10.1109/ROBOT.2000.845351.
[4] S. Macfarlane and E.A. Croft. Jerk-bounded manipulator trajectory planning: design for realtime applications. IEEE Transactions on Robotics and Automation, 19(1):42–52, 2003. doi: 10.1109/TRA.2002.807548.
[5] G. Antonelli, S. Chiaverini, and N. Sarkar. External force control for underwater vehiclemanipulator systems. IEEE Transactions on Robotics and Automation, 17(6):931–938, 2001. doi: 10.1109/70.976027.
[6] D. Yoerger and J. Slotine. Robust trajectory control of underwater vehicles. IEEE Journal of Oceanic Engineering, 10(4):462–470, 1985. doi: 10.1109/JOE.1985.1145131.
[7] A. Alvarez, A. Caiti, and R. Onken. Evolutionary path planning for autonomous underwater vehicles in a variable ocean. IEEE Journal of Oceanic Engineering, 29(2):418–429, 2004. doi: 10.1109/JOE.2004.827837.
[8] N. Sarkar and T.K. Podder. Coordinated motion planning and control of autonomous underwater vehicle-manipulator systems subject to drag optimization. IEEE Journal of Oceanic Engineering, 26(2):228–239, 2001. doi: 10.1109/48.922789.
[9] J. Yuh. Modeling and control of underwater robotic vehicles. IEEE Transactions on Systems, Man and Cybernetics, 20(6):1475–1483, 1990. doi: 10.1109/21.61218.
[10] B. Lévesque and M.J. Richard. Dynamic analysis of a manipulator in a fluid environment. International Journal of Robotics Research, 13(3):221–231, 1994. doi: 10.1177/027836499401300304.
[11] T.I. Fossen. Guidance and Control of Ocean Vehicles. John Wiley, New York, 1994.
[12] G. Antonelli. Underwater Robots. 2nd ed. Springer, 2006.
[13] T.J. Tarn, G.A. Shoults, and S.P. Yang. A dynamic model of an underwater vehicle with a robotic manipulator using Kane’s method. Autonomous Robots, 3:269–283, 1996. doi: 10.1007/BF00141159.
[14] J.M. Hollerbach. A recursive Lagrangian formulation of manipulator dynamics and a comparative study of dynamics formulation complexity. IEEE Transactions on Systems, Man, and Cybernetics, 10(11):730–736, 1980. doi: 10.1109/TSMC.1980.4308393.
[15] J.N. Newman. Marine Hydrodynamics. 40th Anniversary Edition. The MIT Press, 2018.
[16] A. Kumar, V. Kumar, and S. Sen. Dynamics of underwater manipulator: a recursive Lagrangian formulation. In R. Kumar, V.S. Chauhan, M. Talha, H. Pathak (Eds.), Machines, Mechanism and Robotics, Lecture Notes in Mechanical Engineering, pages 555–570. Springer, Singapure, 2022. doi: 10.1007/978-981-16-0550-5_56.
[17] A.K. Sharma and S.K. Saha. Simplified drag modeling for the dynamics of an underwater manipulator. IEEE Journal of Ocean Engineering, 46(1):40–55, 2021. doi: 10.1109/JOE.2019.2948412.
[18] R. Colbaugh, H. Seraji, and K.L. Glass. Obstacle avoidance for redundant robots using configuration control. Journal of Robotics Systems, 6(6):721–744,1989. doi: 10.1002/rob.4620060605.
Go to article

Authors and Affiliations

Virendra Kumar
1
ORCID: ORCID
Soumen Sen
1
Shibendu Shekhar Roy
2

  1. Robotics and Automation Division, CSIR-Central Mechanical Engineering Research Institute, Durgapur, India
  2. Mechanical Engineering Department, National Institute of Technology, Durgapur, India

This page uses 'cookies'. Learn more