Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the paper an algorithm and computer code for the identification of the hysteresis parameters of the Jiles-Atherton model have been presented. For the identification the particle swarm optimization method (PSO) has been applied. In the optimization procedure five design variables has been assumed. The computer code has been elaborated using Delphi environment. Three types of material have been examined. The results of optimization have been compared to experimental ones. Selected results of the calculation for different material are presented and discussed. A novel vector operated one-cycle control matrix rectifier (OCC-MR) is proposed in this paper. Matrix rectifier (MR) is a generalized buck three-phase AC-DC converter with four-quadrant operation capability. MR can also be the front-stage circuit of AC-DC-AC equivalent structure of MC. One-cycle control (OCC) is a nonlinear control technique, which integrates modulation algorithm and control strategy. By applying OCC to current control loop, the OCC-MR achieves balance only in a switching cycle,and realizes unitary input power factor. Furthermore, vector operation of OCC results In minimum switching losses. In order to make up for the insufficiency of OCC on load disturbance suppression, a PID controller is added onto output voltage control to improve load regulation. The OCC-MR features great simplicity, fast dynamic response and good immunity on input disturbance. On the basis of theoretical analysis, a systematic simulation of OCC-MR is implemented by means of Matlab/Simulink. Both static state performance and dynamic state performance of OCC-MR are discussed deeply. The simulation results have proved theoretical analysis of the vector operation of OCC-MR, and the control effects are satisfactory.

Go to article

Authors and Affiliations

Xinghua Yang
Jianguo Jiang
Xijun Yang
Download PDF Download RIS Download Bibtex

Abstract

In order to meet the operation requirements of the beam supply with multiworking conditions, multi-modes and high efficiency, a dual-mode hybrid output control method combining phase-shifting and pulse-width dual-mode modulation technology with secondary side series-parallel operation is proposed. In this paper, the structure and working mode of the new dual full-bridge topology are firstly analyzed. Secondly, the main circuit parameters are designed according to the power performance indicators, and the losses under two control modes of phase shift and pulse width are calculated. Finally, comparing the losses of these two control methods, and combining the series-parallel operation mode of the secondary side of the transformer, a dual-mode switching control method of the beam supply is designed. In order to verify the rationality of the dual-mode mixed output control method, a principle prototype with a rated capacity of 2 kW, a rated voltage of 1 800 V and a switching frequency of 50 kHz was used for verification. Experiments show the effectiveness and superiority of the dual-mode hybrid output control method.
Go to article

Authors and Affiliations

Changzu An
1
ORCID: ORCID
Hongxia Lu
2

  1. CCCC Ruitong Road & Bridge Maintenance Technology Co. Ltd., China
  2. Xi‘an Railway Vocational & Technical Institute, China

This page uses 'cookies'. Learn more