Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an analysis of overvoltages caused by a direct lightning strike in intrusion detection system equipped with underground radiating cable sensors. Waveforms of currents and voltages in the system components are calculated using analytical formulas basing on a transmission-line model in the frequency domain. The time-domain waveforms are computed using the inverse fast Fourier transform (IFFT). Three network configurations of the intrusion detection system are analyzed.

Go to article

Authors and Affiliations

K. Aniserowicz
Download PDF Download RIS Download Bibtex

Abstract

Electric arc is a complex phenomenon occurring during the current interruption process in the power system. Therefore performing digital simulations is often necessary to analyse transient conditions in power system during switching operations. This paper deals with the electric arc modelling and its implementation in simulation software for transient analyses during switching conditions in power system. Cassie, Cassie-Mayr as well as Schwarz-Avdonin equations describing the behaviour of the electric arc during the current interruption process have been implemented in EMTP-ATP simulation software and presented in this paper. The models developed have been used for transient simulations to analyse impact of the particular model and its parameters on Transient Recovery Voltage in different switching scenarios: during shunt reactor switching-off as well as during capacitor bank current switching-off. The selected simulation cases represent typical practical scenarios for inductive and capacitive currents breaking, respectively.

Go to article

Authors and Affiliations

Piotr Oramus
Tomasz Chmielewski
Tomasz Kuczek
Wojciech Piasecki
Marcin Szewczyk
Download PDF Download RIS Download Bibtex

Abstract

The effectiveness of lightning protection on the power and distribution grid is a significant factor, which influences the power distribution reliability and the failure rate of system elements. As part of this article, a mathematical model will be presented, taking into account selected parameters that affect the assessment of the lightning hazard of an overhead line. The proposed model will consider the location of the object near the line and the adjustment of line conductor overhangs. Moreover, the mentioned mathematical model allows for analyzing the impact of considered parameters on the protection level of the power system, and transient overvoltages that occur in this system. The article contains also a detailed description of an effective and fast method to assess the lightning discharge impact on the power system with insufficient data. The introduced model was tested to verify the correctness of its operation by comparison of calculation results and functional data. High convergence of calculated and functional data and uncomplicated model structure ensure a wide range of applications for the proposed solution to easily prevent emergency situations in the power system. Furthermore, the described model gives the opportunity to assess the reduction of the range of selectivity zone associated with the power line, in conjunction with the impact of constructional peculiarities and a near object.

Go to article

Bibliography

  1.  J.L. He and R. Zeng, “Lightning shielding failure analysis of 1000 kV ultra-high voltage AC transmission line”, Proc. CIGRE Session, 2010, pp. 1‒9.
  2.  A. Borghetti, G. Martinez Figueiredo Ferraz, F. Napolitano, C.A. Nucci, A. Piantini, and F. Tossani, “Lightning protection of a multi- circuit HV-MV overhead line”, Electr. Power Syst. Res. 180, 1‒10 (2020).
  3.  A. Murphy, “Lightning strike direct effects”, Polymer Composites in the Aerospace Industry, 2nd Edition, Woodhead Publishing, 2020.
  4.  G. Shanqiang, W. Jian, W. Min, G. Juntian, Z. Chun, and L. Jian, “Study on lightning risk assessment and early warning for UHV DC transmission channel”, High Voltage 4(2), 144‒150 (2019).
  5.  R.G. Deshagoni, T. Auditore, R. Rayudu, and C.P. Moore, “Factors Determining the Effectiveness of a Wind Turbine Generator Lightning Protection System”, IEEE Trans. Ind. Appl 55(6), 6585‒6592 (2019).
  6.  J. Bendík, et al., “Experimental verification of material coefficient defining separation distance for external lightning protection system”, J. Electrostat. 98, 69‒74 (2019).
  7.  K. I. Pruslin, “Organization for increasing lightning resistance of overvoltage lines PJSC “FGC UES””, VI Russian Conference on Lightning Protection, 2018, pp. 1‒24.
  8.  G. E. Masin, “Indicators of lightning resistance of power facilities of Kubanenergo PJSC and measures to increase them”, VI Russian Conference on Lightning Protection, 2018, pp. 1‒9.
  9.  A. Andreotti, A. Pierno, and V.A. Rakov, “A new tool for calculation of lightning-induced voltages in power systems – ”Part I: Development of circuit model”, IEEE Trans. Power Del. 30(1), 326‒333 (2015).
  10.  C. Wooi, Z. Abul-Malek, M. Rohani, A. Yusof, S. Arshad, and A. Elgayar, “Comparison of lightning return stroke channel-base current models with measured lightning current”, Bull. EEI 8(4), 1478‒1488(2019).
  11.  T.H. Thang, Y. Baba, V.A. Rakov, and A. Piantini, “FDTD computation of lightning-induced voltages on multi-conductor lines with surge arresters and pole transformers”, IEEE Trans. Electromagn. Compat. 57(3), 442‒447(2015).
  12.  M. Brignone, F. Delfino, R. Procopio, M. Rossi, and F. Rachidi, “Evaluation of power system lightning performance Part I: Model and numerical solution using the PSCAD-EMTDC platform”, IEEE Trans. Electromagn. Compat. 59(1), 137‒145 (2017).
  13.  M.E.M. Rizk et al., “Protection Against Lightning-Induced Voltages: Transient Model for Points of Discontinuity on Multiconductor Overhead Line”, IEEE Trans. Electromagn. Compat. 62(4), 1209‒1218 (2020), doi: 10.1109/TEMC.2019.2940535.
  14.  J. Zhang et al., “Evaluation of the Lightning-Induced Voltages of Multiconductor Lines for Striking Cone-Shaped Mountain, ” IEEE Trans. Electromagn. Compat. 61(5), 1534‒1542 (2019).
  15.  Q. Li et al., “On the influence of the soil stratification and frequency-dependent parameters on lightning electromagnetic fields”, Electr. Power Syst. Res. 178, 1‒10(2020).
  16.  E. Soto and E. Perez, “Lightning-induced voltages on overhead lines over irregular terrains”, Electr. Power Syst. Res. 176, 105941 (2019).
  17.  M. Brignone, D. Mestriner, R. Procopio, M. Rossi, and F. Rachidi, “Evaluation of the mitigation effect of shield wires on lightning-induced overvoltages in MV distribution systems using statistical analysis”, IEEE Trans. Electromagn. Compat. 60(5), 1‒10 (2018).
  18.  M.R. Bank Tavakoli and B. Vahidi, “Shielding failure rate calculation by means of downward and upward lightning leader movement models: Effect of environmental conditions”, J. Electrostat. 68, 275‒283 (2010).
  19.  Y. Xu and M. Chen, “Striking Distance Calculation for Flat Ground and Lightning Rod by a 3D Self-Organized Leader Propagation Model”, Intern. Conf. on Lightning Protection, Vienna, Austria, 2012.
  20.  V. Cooray, C.A. Nucci, and F. Rachidi, “On the Possible Variation of the Lightning Striking Distance as Defined in the IEC Lightning Protection Standard as a Function of Structure Height”. Intern. Conf. on Lightning Protection, Vienna, Austria, 2012.
  21.  M.E.M. Rizk and G.N. Trinh, High voltage engineering, p. 804, Taylor and Francis Group, LLC, 2014.
  22.  Lightning protection guide. Dehn + Sohne GmbH + Co.KG., Germany, 2007/2012.
  23.  S. Takatoshi, “Lightning striking characteristics to tall structures”, IEEJ Trans. Electr. Electron. Eng. 13, 938‒947 (2017).
  24.  P.N. Mikropoulos and T.E. Tsovilis, “Striking Distance and Interception Probability, ” IEEE Trans. Power Delivery 23(3), 1571‒1580 (2008).
  25.  Y. Xie, M. Dong, H. He, J. He, H. Cai, and X. Chen, “A new tool for lightning performance assessment of overhead transmission lines”, Proc. 7th Asia-Pacific Int. Conf. Light., 2011, pp. 513‒519.
  26.  D. Spalek, “Proposal of the criterion for transmission line lumped parameters analysis”, Bull. Pol. Ac.: Tech. 67(6), 1181‒1186 (2019).
  27.  G. Benysek, M.P. Kazmierkowski, J. Popczyk, and R. Strzelecki, “Power electronic systems as a crucial part of Smart Grid infrastructure – a survey”, Bull. Pol. Ac.: Tech. 59(4), 455‒473 (2011).
  28.  S. Robak and R.M. Raczkowski, “Substations for offshore wind farms: a review from the perspective of the needs of the Polish wind energy”, Bull. Pol. Ac.: Tech. 66(4), 517‒528 (2018).
  29.  M. Borecki and J. Starzyński, “Selected Aspects of Numerical Models and Cost Comparison Analysis of Surge Protection Device”, Progress in Applied Electrical Engineering (PAEE), Poland, 2019, pp. 1‒4.
  30.  M. Borecki, M. Ciuba, Y. Kharchenko, and Y. Khanas, “Substation reliability evaluation in the context of the stability prediction of power grids”, Bull. Pol. Ac.: Tech. 68(4), 769‒776 (2020).
  31.  M. Borecki, “A Proposed New Approach for the Assessment of Selected Operating Conditions of the High Voltage Cable Line”, Energies 13, 5275(1‒15) (2020).
  32.  Z. Flisowski, Calculation of atmospheric surges in power lines based on antenna wave theory. Electrotechnical Dissertations, Volume XV, Z.1, pp. 177‒194, 1968.
  33.  M. Borecki, Analysis of atmospheric overvoltages protection of medium voltage overhead lines with covered conductors, pp. 1‒128, Warszawa, Wyd. P.W. 2017.
Go to article

Authors and Affiliations

Michał Borecki
1
ORCID: ORCID
Maciej Ciuba
1
Yevhen Kharchenko
2 3
Yuriy Khanas
3

  1. Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
  2. University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 2, 10-719 Olsztyn, Poland
  3. Lviv Polytechnic National University, ul. S. Bandery St 12, 79000 Lviv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this research work is to study the issues of the protection of 6–10 kV lines and access ways overvoltage in the electrical networks of modern enterprises of high-energy intensity, as well as the search for real technical opportunities to improve the protection of power lines directly in conditions of their operation. The methodology of this scientific research is based on a combination of methods of system analysis of the principles of the functioning of electric networks of energy-intensive enterprises with an analytical study of the fundamental aspects of ensuring the protection of 6 to 10 kV lines and access ways from overvoltage. The results of the conducted scientific research indicate the relevance of the issues of ensuring the protection of lines and electrical networks of energy-intensive enterprises from overvoltage and the need to develop special technical devices to ensure the proper level of such protection in real conditions. The results and conclusions of this research work are of significant importance for developers and designers of electric networks of enterprises with increased energy capacity, as well as for employees of various power supply systems who, by their occupation, face the tasks of servicing electric networks, which include lines and access ways with specified operating voltage parameters and ensuring the proper level of safety and practical use of these electric networks of energy-intensive enterprises.
Go to article

Authors and Affiliations

Viktor I. Dmitrichenko
1
ORCID: ORCID
Zhubanyshbay S. Abdimuratov
2
ORCID: ORCID
Irina V. Kazanina
1
ORCID: ORCID
Nagym T. Omirzakov
1
ORCID: ORCID
Yerkebulan N. Zhagyparov
1
ORCID: ORCID

  1. Department of Power Supply and Renewable Energy Sources, Almaty University of Power Engineering and Telecommunications named after Gumarbek Daukeev, Republic of Kazakhstan
  2. Department of Electric Power Systems, Almaty University of Power Engineering and Telecommunications named after Gumarbek Daukeev, Republic of Kazakhstan

This page uses 'cookies'. Learn more