Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper an analysis of the surface properties of (Ti,Pd,Eu)Ox thin films prepared by magnetron sputtering has been described. In particular, the results of composition and structure investigations were studied in relation to the surface state and optical properties. It was found that (Ti,Pd,Eu)Ox film was nanocrystalline and had a rutile structure. The average crystallites size was equal to 7.8 nm. Films were homogeneous and had densely packed grains. Investigation of the surface properties by XPS showed that titanium was present at 4+ state (in the TiO2form), palladium occurred as PdO2(also at 4+ state), while europium was in Eu2O3form (at 3+ state). In comparison with the unmodiffied TiO2, the coating with Pd and Eu additives had a rather high transparency (approx. 47%) in the visible light range, its optical absorption edge was shifted towards into the longer wavelengths (from 345 nm to 452 nm), and the width of optical energy gap Egopt was nearly twice lower (1.82 eV). Besides, the resistivity of (Ti,Pd,Eu)Ox at room temperature was 1×103 Wcm. In the case of the film as-deposited on Si substrate (p-type) the generation of photocurrent as a response to light beam excitation (λexc = 527 nm) was observed.

Go to article

Authors and Affiliations

D. Wojcieszak
D. Kaczmarek
J. Domaradzki
Download PDF Download RIS Download Bibtex

Abstract

Methane (CH4) sensitivity of zinc oxide (ZnO) thin film has been studied in the present work. The sensor element comprises

of a chemically fabricated ZnO semiconducting layer and a layer of palladium (Pd) as catalyst. The catalyst layer was formed on the surface of semiconducting ZnO following a wet chemical process from palladium chloride (PdCl2) solution. Fundamental features of a sensor element e.g. sensitivity, response time and recovery process has been studied. The effect of operating temperature on performance of the sensor material has been investigated and a choice of optimum temperature was made at around 200oC. The sensor element exhibited reasonable sensitivity of about 86% at this temperature in presence of 1 vol% methane (CH4) in air.

Go to article

Authors and Affiliations

P. Mitra
A.K. Mukhopadhyay
Download PDF Download RIS Download Bibtex

Abstract

This work presents the studies on the electrochemical process of thin palladium layers formation onto electrodeposited cobalt coatings. The suggested methodology consists of the preparation of thick and smooth cobalt substrate via galvanostatic electrodeposition. Cobalt coatings were prepared under different cathodic current density conditions from acidic bath containing cobalt sulphate and addition of boric acid. Obtained cobalt layers were analyzed by x-ray diffraction to determine their phase composition. Freshly prepared cobalt coatings were modificated by the galvanic displacement method in PdCl2 solution, to obtain smooth and compact Pd layer. The comparison of electrocatalytic properties of Co coatings with Co/Pd ones enabled to determine the influence of Palladium presence in cathodic deposits on the hydrogen evolution process.

Go to article

Authors and Affiliations

K. Skibińska
D. Kutyła
K. Kołczyk
A. Kwiecińska
R. Kowalik
P. Żabiński
Download PDF Download RIS Download Bibtex

Abstract

Cultivation-based assays represent the gold standard for the assessment of virus infectivity; however, they are time-consuming and not suitable for every virus type. Pre-treatment with platinum (Pt) compounds followed by real-time PCR has been shown to discriminate between infectious and non-infectious RNA viruses. This study examined the effect of Pt and palladium (Pd) compounds on enveloped DNA viruses, paying attention to two significant pathogens of livestock – bovine herpesvirus-1 (BoHV-1) and African swine fever virus (ASFV). Native or heat-treated BoHV-1 suspension was incubated with the spectrum of Pt/Pd compounds. Bis(benzonitrile)palladium(II) dichloride (BB-PdCl 2) and dichloro(1,5-cyclooctadiene) palladium(II) (PdCl 2-COD) produced the highest differences found between native and heat- -treated viruses. Optimized pre-treatment conditions (1 mM of Pd compound, 15 min, 4°C) were applied on both virus genera and the heat inactivation profiles were assessed. A significant decrease in the detected quantity of BoHV-1 DNA and ASFV DNA after heat-treatment (60°C and 95°C) and consequent incubation with Pd compounds was observed. BB-PdCl 2 and PdCl 2-COD could help to distinguish between infectious and non-infectious enveloped DNA viruses such as BoHV-1 or ASFV.
Go to article

Authors and Affiliations

M. Krzyzankova
1
M. Krasna
1
J. Prodelalova
2
P. Vasickova
1

  1. Food and Environmental Virology, Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
  2. Molecular Epidemiology of Viral Infections, Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

A layered sensor structure of metal-free phthalocyanine H2Pc (~160 nm) with a very thin film of palladium (Pd ~20 nm) on the top, has been studied for hydrogen gas-sensing application at relatively low temperatures of about 30°C and about 40°C. The layered structure was obtained by vacuum deposition (first the phthalocyanine Pc and than the Pd film) onto a LiNbO3Y- cut Z-propagating substrate, making use of the Surface Acoustic Wave method, and additionally (in this same technological processes) onto a glass substrate with a planar microelectrode array for simultaneous monitoring of the planar resistance of the layered structure. In such a layered structure we can detect hydrogen in a medium concentration range (from 0.5 to 3% in air) even at about 30°C. At elevated temperature up to about 40°C the differential frequency increases proportionally (almost linearly) to the hydrogen concentration and the response reaches its steady state very quickly. The response times are about 18 s at the lowest 0.5% hydrogen concentration to about 42 s at 4% (defined as reaching 100% of the steady state). In the case of the investigated layered structure a very good correlation has been observed between the two utilized methods - the frequency changes in the SAW method correlate quite well with the decreases of the layered structure resistance.

Go to article

Authors and Affiliations

W.P. Jakubik
M. Urbańczyk
E. Maciak
T. Pustelny

This page uses 'cookies'. Learn more