Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 12
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The goal of the project is to investigate the influence of elastic mechanisms on technical, bipedal locomotion. In particular, the paper presents the parameter identification for a biologically inspired two-legged robot model. The simulation model consists of a rigid body model equipped with rubber straps. The arrangement of the rubber straps is based on the arrangement of certain muscle groups in a human being. The parameters of the elastic elements are identified applying numerical optimisation. Thus two optimisation algorithms are investigated and compared with respect to robustness and computing time. Moreover, different objective functions are defined and discussed. The behaviour of the resulting configuration of the system is explored in terms of biomechanics.

Go to article

Authors and Affiliations

Daniela Förg
Heinz Ulbrich
Download PDF Download RIS Download Bibtex

Abstract

The optimal design of excitation signal is a procedure of generating an informative input signal to extract the model parameters with maximum pertinence during the identification process. The fractional calculus provides many new possibilities for system modeling based on the definition of a derivative of noninteger-order. A novel optimal input design methodology for fractional-order systems identification is presented in the paper. The Oustaloup recursive approximation (ORA) method is used to obtain the fractional-order differentiation in an integer order state-space representation. Then, the presented methodology is utilized to solve optimal input design problem for fractional-order system identification. The fundamental objective of this approach is to design an input signal that yields maximum information on the value of the fractional-order model parameters to be estimated. The method described in this paper was verified using a numerical example, and the computational results were discussed.

Go to article

Authors and Affiliations

W. Jakowluk
Download PDF Download RIS Download Bibtex

Abstract

For reasons of reliability, stability, safety and economy, controlling and monitoring the response of structures during the time of use, either permanently or temporally, is of increasing importance. Experimental methods enable in-situ measuring deformations of any kind of structures and enable drawing conclusions over the actual state of the structures. However, to obtain reliable knowledge of the real internal conditions like the strength of materials and the actual stress-state, as well as of their changes over time, caused by ageing, fatigue and environmental influences, always an inverse problem must be solved. That requires special mathematical algorithms. Especially for time-depending material response it might be quite important to know the material parameters at any time and furthermore the internal stress-state also. Therefore, a method will be presented to solve the inverse problem of parameter identification with reference to linear visco-elastic materials.
Go to article

Authors and Affiliations

Karl-Hans Laerrnann
Download PDF Download RIS Download Bibtex

Bibliography

[1] Hou C., Zhu M., Chen Y., Cai X., Pre-filter phase-locked loop: principles and effects with inter- harmonic perturbation, IET Renewable Power Generation, vol. 14, no. 16, pp. 3088–3096 (2020), DOI: 10.1049/iet-rpg.2020.0448.

[2] Jove E., Gonzalev C.J.M., Casteleiro R.J.L. et al., An intelligent system for harmonic distortions detection in wind generator power electronic devices, Neurocomputing, vol. 456, pp. 609–621 (2021), DOI: 10.1016/j.neucom.2020.07.155.

[3] Altintasi C., Aydin O., Taplamacioglu M.C. et al., Power system harmonic and interharmonic estima- tion using Vortex Search Algorithm, Electric Power Systems Research, vol. 182, pp. 106187 (2020), DOI: 10.1016/j.epsr.2019.106187.

[4] Sun Y., Lin Y., Wang Y. et al., Theory of symmetric winding distributions and a general method for winding MMF harmonic analysis, IET Electric Power Applications, vol. 14, no. 13 (2021), DOI: 10.1049/iet-epa.2020.0553.

[5] Cao Q., Shen Q.T., An improved �� �� ����harmonic current detecting method and digital LPF filter’s study, Techniques of Automation and Applications, vol. 29, no. 3, pp. 74–76 (2010), http://en.cnki.com.cn/Article_en/CJFDTotal-ZDHJ201003022.htm.

[6] Paplinski J.P., Cariow A., Fast 10-Point DFT Algorithm for Power System Harmonic Analysis, Applied Sciences, vol. 11, no. 15, p. 7007 (2021), DOI: 10.3390/app11157007.

[7] Wu J.Z., Mei F., Chen C., Power system harmonic detection method based on empirical wavelet transform, Power System Protection and Control, vol. 48, no. 6, pp. 136–143 (2020), DOI: 10.19783/j.cnki.pspc.190470.

[8] Li J., Lin H., Teng Z. et al., Digital prolate spheroidal window-based S-transform for time-varying harmonic analysis, Electric Power Systems Research, vol. 187 (2020), DOI: 10.1016/j.epsr.2020.106512.

[9] Zhang Y.L., Chen H.W., Parameter identification of harmonics and inter-harmonics based on ceemd- wpt and Prony algorithm, Power System Protection and Control, vol. 46, no. 12, pp. 115–121 (2018), DOI: 10.7667/PSPC170866.

[10] Yang Y.K., Yang M.Y., Application of prony algorithm in parameter identification of harmon- ics and inter-harmonics, Proceedings of the CSU-EPSA, vol. 24, no. 3, pp. 121–126 (2012), http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLZD201203024.htm.

[11] Zhang Y., Fan W., Zhang Q., Li X., Harmonic separation from grid voltage with EEMD-ICA and SVD, Computer Measurement and Control, vol. 27, no. 3, pp. 39–43 (2019), http://www.jsjclykz.com/ ch/reader/view_abstract.aspx?file_no=201809061095.

[12] Chen Q., Cai W., Sun L. et al., Harmonic detection method based on VMD, Electrical Measurement and Instrumentation, vol. 55, no. 2, pp. 59–65 (2018), https://doi.org/10.1088/1742-6596/2095/1/012057.

[13] Thirumala K., Umarikar A.C., Jian T., Estimation of single-phase and three -phase power -quality indices using empirical wavelet transform, IEEE Transactions on Power Delivery, vol. 30, no. 1, pp.445–454 (2015), DOI: 10.1109/TPWRD.2014.2355296.

[14] Desai V.A., Rathore S., Harmonic detection using Kalman filter, In Proceedings of the 2016 Interna- tional Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, pp. 858–863 (2016), DOI: 10.1109/ICEEOT.2016.7754808.

[15] Tiyarachakun S., Areerak K.L., Areerak K.N., Instantaneous Power Theory with Fourier and Optimal Predictive Controller Design for Shunt Active Power Filter, Model. Simul. Eng., pp. 1–20 (2014), DOI: 10.1155/2014/381760.

[16] Habrouk M., Darwish M.K., Design and implementation of a modified Fourier analysis harmonic current computation technique for power active filters using DSPs, IEEE Proc. Electr. Power Appl., vol. 148, pp. 21–28 (2001), DOI: 10.1049/ip-epa:20010014.

[17] Karimi H., Karimi G.M., Reza I.M., Bakhshai A.R., An adaptive filter for synchronous extraction of har- monics and distortions, IEEE Trans. Power Deliv., vol. 18, pp. 1350–1356 (2003), DOI: 10.1515/ijeeps- 2013-0145.

[18] Musa S., Mohd M.A., Hoon Y., Modified Synchronous Reference Frame Based Shunt Active Power Filter with Fuzzy Logic Control Pulse Width Modulation Inverter, Energies, vol. 10, no. 758 (2017), DOI: 10.3390/en10060758.

[19] Narongrit T., Areerak K.L., Areerak K.N., A New Design Approach of Fuzzy Controller for Shunt Active Power Filter, Electr. Power Compon. Syst., vol. 43, pp. 685–694 (2015), DOI: 10.1080/ 15325008.2014.996680.

[20] Sujitjorn S., Areerak K.L., Kulworawanichpong T., The DQ Axis with Fourier (DQF) Method for Harmonic Identification, IEEE Trans. Power Deliv., vol. 22, pp. 737–739 (2007), DOI: 10.1109/TP- WRD.2006.882465.

[21] Daubechies I., Jianfeng L., Synchrosqueezed wavelet transforms: An empirical mode decomposition- like tool, Applied and Computational Harmonic Analysis, vol. 30, no. 2, pp. 243–261 (2011), DOI: 10.1016/j.acha.2010.08.002.

[22] Li L., Cai H.Y., Jiang Q.T., Ji H.B., Adaptive synchrosqueezing transformwith a time-varying parameter for non-stationary signal separation, Applied and Computational Harmonic Analysis, vol. 49, no. 3, pp. 1884–2020 (2019), DOI: 10.1016/j.acha.2019.06.002.


[23] Gang Y., Zhonghu W., Ping Z., Zhen L., Local maximum synchrosqueezing transform: An energy- concentrated time-frequency analysis tool, Mechanical Systems and Signal Processing, vol. 117, pp. 537–552 (2019), DOI: 10.1016/j.ymssp.2018.08.006.

[24] Lin L., Haiyan C., Qiangtang J., Hongbing J., An empirical signal separation algorithm for multicom- ponent signals based on linear time-frequency analysis, Mechanical Systems and Signal Processing. vol. 121, pp. 791–809 (2019), DOI: 10.1016/j.ymssp.2018.11.037.

[25] Rasoul M.M., Alan F.L., Yunwei L., Adaptive control of an active power filter for harmonic suppres- sion and power factor correction, International Journal of Dynamics and Control, pp. 1–10 (2021), DOI: 10.1007/s40435-021-00825-0.

[26] Avalos O., Cuevas E., Becerra H.G. et al., Kernel Recursive Least Square Approach for Power System Harmonic Estimation, Electric Power Components and Systems, vol. 48, no. 16–17, pp. 1708–1721 (2021), DOI: 10.1080/15325008.2021.1908457.

[27] Mert A., Celik H.H., Emotion recognition using time-frequency ridges of EEG signals based on multivariate synchrosqueezing transform, Biomedizinische Technik. Biomedical Engineering, vol. 66, no. 4, pp. 345–352 (2021), DOI: 10.1515/bmt-2020-0295.

[28] Yang C., Ban L., Research on Harmonic Detection System Based on Wavelet Packet Transform, IOP Conf. Series: Journal of Physics: Conf. Series, vol. 1314, no. 012038 (2019), DOI: 10.1088/1742-6596/1314/1/012038.

[29] Gong M.F. et al., A New Method to Detect Harmonics and Inter-Harmonics Based on Hilbert Marginal Spectrum, Applied Mechanics and Materials, vol. 229–231, pp. 1060–1063 (2012), DOI: 10.4028/www.scientific.net/AMM.229-231.1060.

[30] Yu M., Wang B., Wang W.B. et al., An inter-harmonic detection method based on synchrosqueezing wavelet transform, Proceedings of the CSEE, vol. 36, no. 11, pp. 2944–2951 (2016), DOI: 10.13334/j.0258-8013.pcsee.2016.11.010.

[31] Chang G.W. et al., A Hybrid Approach for Time-Varying Harmonic and Interharmonic Detection Using Synchrosqueezing Wavelet Transform, Applied Sciences, vol. 11, no. 2, pp. 752 (2021), DOI: 10.3390/app11020752.

[32] Khoa N.M., Le V.D., Tung D.D., Toan N.A., An advanced IoT system for monitoring and analysing chosen power quality parameters in micro-grid solution, Archives of Electrical Engineering, vol. 70, no. 1, pp. 173–188 (2021), DOI: 10.24425/aee.2021.136060.

[33] Yudaev I.V., Rud E.V., Yundin M.A., Ponomarenko T.Z., Isupova A.M., Analysis of the harmonic composition of current in the zero-working wire at the input of the load node with the prevailing non-linear power consumers, Archives of Electrical Engineering, vol. 70, no. 2, pp. 463–473 (2021), DOI: 10.24425/aee.2021.136996.


Go to article

Authors and Affiliations

Lin Sun
1
Jing Song
2
Yan Jin
1

  1. Wuchang University of Technology, China
  2. National University of Defense Technology, China
Download PDF Download RIS Download Bibtex

Abstract

A novel magnetically-coupled energy storage inductor boost inverter circuit for renewable energy and the dual-mode control strategy with instantaneous value feedback of output voltage are proposed. In-depth research and analysis on the circuit, control strategy, voltage transmission characteristics, etc., providing the parameter design method of magnetically-coupled energy storage inductors and output filter. The circuit topology is cascaded by the input source ��in, the input filter ��in, a single-phase inverter bridge with a magnetically-coupled energy storage inductor, and a CL filter; The control strategy serves the output voltage as a reference to achieve the switch of step-down and step-up modes smoothly. The simulation results of a 1000 VA 100–200 VDC, 220 V 50 Hz AC inverter show that the proposed inverter can realize single-stage boost power conversion, which can adapt to resistive, capacitive and inductive loads, has high power density and low output waveform distortion. It has good application prospects in small and medium-capacity single-phase inverter occasions with low input voltage.
Go to article

Bibliography

[1] Hussain H.M., Narayanan A., Nardelli P.H.J., Yang Y., What Is Energy Internet? Concepts, Technologies, and Future Directions, IEEE Access., vol. 8, pp. 183127–183145 (2020), DOI: 10.1109/access.2020.3029251.

[2] Tao Z., Jiahui J., Daolian C., An efficient and low-cost DMPPT approach for photovoltaic sub-module based on multi-port DC converter, Renewable Energy, vol. 178, pp. 1144–1155 (2021), DOI: 10.1016/j.renene.2021.06.134.

[3] Jiang J., Zhang T., Chen D., Analysis, Design, and Implementation of a Differential Power Processing DMPPT With Multiple Buck–Boost Choppers for Photovoltaic Module, IEEE Transactions on Power Electronics, vol. 36, no. 9, pp. 10214–10223 (2021), DOI: 10.1109/tpel.2021.3063230.

[4] Xianglin L., Zhiwei X., Xueyu Y., Lixia Z., Wenzhong M., Wei H., Low-complexity multivector-based model predictive torque control for PMSM with voltage preselection, IEEE Transactions on Power Electronics, vol. 36, no. 10, pp. 11726–11738 (2021), DOI: 10.1109/tepl.2021.3073137.

[5] Xianglin L., Zhiwei X., Lixia Z., Wei H., A low-complexity three-vector-based model predictive torque control for SPMSM, IEEE Transactions on Power Electronics, vol. 36, no. 11, pp. 13002–13012 (2021), DOI: 10.1109/TPEL.2016.2532387.

[6] Rahbar K., Chai C.C., Zhang R., Energy cooperation optimization in microgrids with renew- able energy integration, IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 1482–1493 (2018), DOI: 10.1109/tsg.2016.2600863.


[7] Quint R. et al., Transformation of the grid: the impact of distributed energy resources on bulk power systems, IEEE Power and Energy Magazine, vol. 17, no. 6, pp. 35–45 (2019), DOI: 10.1109/mpe. 2019.2933071.

[8] Salem Q., Liu L., Xie J., Dual operation mode of a transformerless h-bridge inverter in low- voltage microgrid, IEEE Transactions on Industry Applications, vol. 55, no. 5, pp. 5289–5299 (2019), DOI: 10.1109/tia.2019.2917807.

[9] Hanchao Z., Daolian C., A single-stage isolated charging/discharging DC-AC converter with sec- ond harmonic current suppression in distributed generation systems, IECON 2017 – 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, pp. 4427–4432 (2017).

[10] Liu S., He Y., Wang G., Wang M., Power Decoupling Control for Boost-Type Single-Phase Inverter with Active Power Buffer, 2019 IEEE Energy Conversion Congress and Exposition, Maryland, USA, pp. 2280–2285 (2019).

[11] Stawiarski Ł., Piróg S., Active power decoupling topology for AC-DC and DC-AC single-phase systems with decoupling capacitor minimization, Archives of Electrical Engineering, vol. 67, no. 1, pp. 193–205 (2018), DOI: 10.24425/aee.2018.119001.

[12] Xu S., Chang L., Shao R., Single-phase voltage source inverter with voltage Boosting and power decoupling capabilities, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 3, pp. 2977–2988 (2020), DOI: 10.1109/jestpe.2019.2936136.

[13] Chen Z., Wu Q., Yuan Y., A novel zero-voltage-switching push–pull high-frequency-link single-phase inverter, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 2, pp. 421–434 (2016), DOI: 10.1109/jestpe.2015.2505171.

[14] Watanabe H., Itoh J., Novel DC to single-phase AC isolated current source inverter with power decou- pling capability for micro-inverter system, 2015 IEEE Energy Conversion Congress and Exposition, Montreal, Canada, pp. 158–165 (2015).

[15] Chakraborty S., Chattopadhyay S., An isolated Buck-Boost type high-frequency link photovoltaic microinverter, 2016 IEEE Applied Power Electronics Conference and Exposition, California, USA, pp. 3389–3396 (2016).

[16] Jiang J., Li Z., Chen D., A quasi single stage isolated Buck-Boost mode multi-input inverter, 2019 10th International Conference on Power Electronics and ECCE Asia, Busan, Korea, pp. 1–6 (2019).

[17] Baoge Z., Deyu H., Tianpeng W., Zhen Z., Donghao W., A novel two-phase interleaved parallel bi-bidrectional DC/DC converter, Archives of Electrical Engineering, vol. 70, no. 1, pp. 219–234 (2021), DOI: 10.24425/aee.2021.136063.

[18] Hong F., Liu J., Ji B., Zhou Y., Wang J., Wang C., Single inductor dual Buck full-bridge inverter, IEEE Transactions on Industrial Electronics, vol. 62, no. 8, pp. 4869–4877 (2015),  DOI: 10.1109/tie.2015.2399280.

[19] Zhang L., Zhang T., Hao Y., Wang B., Two-stage dual-Buck grid-tied inverters with efficiency en-hancement, 2019 IEEE Applied Power Electronics Conference and Exposition, California, USA,  pp. 3251–3256 (2019).

[20] Jagan V., Kotturu J., Das S., Enhanced-Boost quasi-z-source inverters with two-switched impedance networks, IEEE Transactions on Industrial Electronics, vol. 64, no. 9, pp. 6885–6897 (2017), DOI: 10.1109/tie.2017.2688964.

[21] Zhu X., Zhang B., Qiu D., A high Boost active switched quasi-z-source inverter with low input current ripple, IEEE Transactions on Industrial Informatics, vol. 15, no. 9, pp. 5341–5354 (2019), DOI: 10.1109/tii.2019.2899937.


 [22] Leonardo P. Sampaio, Moacyr A.G. de Brito, Luigi G. Junior, Single-phase current-source-Boost inverter for renewable energy sources, 2011 IEEE International Symposium on Industrial Electronics, Gdansk, Poland, pp. 1118–1123 (2011), DOI: 10.1109/ISIE.2011.5984201.

[23] Nattymol Y.J., Shanavas T.N., Power quality analysis of single-phase transformer-less Buck-Boost inverter for compressor load, 2019 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), Tamilnadu, India (2019), DOI: 10.1109/IN-COS45849.2019.8951345.

[24] Sreekanth T., Lakshmi Narasamma N., Mahesh K. Mishra, Sijo Augustine, A single stage cou- pled inductor based high gain DC-AC Buck-Boost inverter for photovoltaic (PV) applications, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA  (2015), DOI: 10.1109/pvsc.2015.7356269.


Go to article

Authors and Affiliations

Yiwen Chen
1
Sixu Luo
1
ORCID: ORCID
Zhiliang Huang
2
Jiahui Jiang
3
ORCID: ORCID

  1. Fujian Key Laboratory of New Energy Generation and Power Conversion, Fuzhou University, China
  2. Texas Instruments Semiconductor Technologies (Shanghai) Co., Ltd., China
  3. College of Electrical Engineering, Qingdao University, China
Download PDF Download RIS Download Bibtex

Abstract

Temperature rise of the hub motor in distributed drive electric vehicles (DDEVs) under long-time and overload operating conditions brings parameter drift and degrades the performance of the motor. A novel online parameter identification method based on improved teaching-learning-based optimization (ITLBO) is proposed to estimate the stator resistance, ��-axis inductance, ��-axis inductance, and flux linkage of the hub motor with respect to temperature rise. The effect of temperature rise on the stator resistance, ��-axis inductance, ��-axis inductance, and magnetic flux linkage is analysed. The hub motor parameters are identified offline. The proposed ITLBO algorithm is introduced to estimate the parameters online. The Gaussian perturbation function is employed to optimize the TLBO algorithm and improve the identification speed and accuracy. The mechanisms of group learning and low-ranking elimination are established. After that, the proposed ITLBO algorithm for parameter identification is employed to identify the hub motor parameters online on the test bench. Compared with other parameter identification algorithms, both simulation and experimental results show the proposed ITLBO algorithm has rapid convergence and a higher convergence precision, by which the robustness of the algorithm is effectively verified. Keywords: parameters identification, teaching–learning-based optimization, hub motor, temperature rise.
Go to article

Authors and Affiliations

Yong Li
1
Juan Wang
2
Taohua Zhang
2
Han Hu
1
Hao Wu
1

  1. Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China
  2. Beijing Institute of Space Launch Technology, Beijing 100076, China
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an identification procedure of electromagnetic parameters for an induction motor equivalent circuit including rotor deep bar effect. The presented proce- dure employs information obtained from measurement realised under the load curve test, described in the standard PN-EN 60034-28: 2013. In the article, the selected impedance frequency characteristics of the tested induction machines derived from measurement have been compared with the corresponding characteristics calculated with the use of the adopted equivalent circuit with electromagnetic parameters determined according to the presented procedure. Furthermore, the characteristics computed on the basis of the classical machine T-type equivalent circuit, whose electromagnetic parameters had been identified in line with the chosen methodologies reported in the standards PN-EN 60034-28: 2013 and IEEE Std 112TM-2004, have been included in the comparative analysis as well. Additional verification of correctness of identified electromagnetic parameters has been realised through comparison of the steady-state power factor-slip and torque-slip characteristics determined experimentally and through the machine operation simulations carried out with the use of the considered equivalent circuits. The studies concerning induction motors with two types of rotor construction – a conventional single cage rotor and a solid rotor manufactured from magnetic material – have been presented in the paper.
Go to article

Authors and Affiliations

Jarosław Rolek
Grzegorz Utrata
Download PDF Download RIS Download Bibtex

Abstract

A crucial feature in health monitoring of already existing structures is to be seen particularly in identifying their topical internal structural parameters and controlling their remaining bearing capacity in the course of ageing processes. This is commonly carried out by measuring the deformations/strains caused by test-loading and calculating the parameters on the basis of the metered data.

In the case of elastic response of materials, the information on the parameters is directly related to the time of measurement; in the case of visco-elastic response, however, the history of the time-depending structural response during the period between initial loading and initiating the test-measurements is generally unknown. The problem exists, then, to separate the superimposed strains due to the existing state and to the test-load. For solving the problem, at first the relevant relations between stress/strain and the visco-elastic parameters are considered. Then a procedure will be described how to determine the strain state owing to the test-load only and to calculate the relevant parameters as functions of time. According to the principle of time-shift invariance, the results describe the time-depending response of the viscoelastic material, no matter at which time the loads are applied.

The presented method will be illustrated by two simple but instructive examples.

Go to article

Authors and Affiliations

Karl-Hans Laermann
Download PDF Download RIS Download Bibtex

Abstract

Despite the ever-increasing computational power of modern processors, the reduction of complex multibody dynamic models remains an important topic of investigation, particularly for design optimization, sensitivity analysis, parameter identification, and controller tuning tasks, which can require hundreds or thousands of simulations. In this work, we first develop a high-fidelity model of a production sports utility vehicle in Adams/Car. Single-link equivalent kinematic quarter-car (SLEKQ, pronounced “sleek”) models for the front and rear suspensions are then developed in MapleSim. To avoid the computational complexity associated with introducing bushings or kinematic loops, all suspension linkages are lumped into a single unsprung mass at each corner of the vehicle. The SLEKQ models are designed to replicate the kinematic behaviour of a full suspension model using lookup tables or polynomial functions, which are obtained from the high-fidelity Adams model in this work. The predictive capability of each SLEKQ model relies on the use of appropriate parameters for the nonlinear spring and damper, which include the stiffness and damping contributions of the bushings, and the unsprung mass. Homotopy optimization is used to identify the parameters that minimize the difference between the responses of the Adams and MapleSim models. Finally, the SLEKQ models are assembled to construct a reduced 10-degree-of-freedom model of the full vehicle, the dynamic performance of which is validated against that of the high-fidelity Adams model using four-post heave and pitch tests.

Go to article

Authors and Affiliations

Andrew Hall
Thomas Uchida
Francis Loh
Chad Schmitke
John Mcphee
Download PDF Download RIS Download Bibtex

Abstract

Long transmission lines have to be compensated to enhance the transport of active power. But a wrong design of the compensation may lead to subsynchronous resonances (SSR). For studies often park equivalent circuits are used. The parameters of the models are often determined analytically or by a three-phase short-circuit test. Models with this parameters give good results for frequencies of 50 Hz and 100 Hz resp. 60 Hz and 120 Hz. But SSR occurs at lower frequencies what arises the question of the reliability of the used models. Therefore in this publication a novel method for the determination of Park equivalent circuit parameters is presented. Herein the parameters are determined form time functions of the currents and the electromagnetic moment of the machine calculated by transient finite-element simulations. This parameters are used for network simulations and compared with the finite-element calculations. Compared to the parameters derived by a three-phase short-circuit a significant better accuracy of simulation results can be achieved by the presented method.

Go to article

Authors and Affiliations

Christian Kreischer
Stefan Kulig
Carsten Göbel
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a creative dung beetle optimization (CDBO) algorithm is proposed and applied to the offline parameter identification of permanent magnet synchronous motors. First, in order to uniformly initialize the population state and increase the population diversity, a strategy to improve the initialization of the dung beetle population using Singer chaotic mapping is proposed to improve the global search performance; second, in order to improve the local search performance and enhance the convergence accuracy of the algorithm, a new dung beetle position update strategy is designed to increase the spatial search range of the algorithm. Simulation results show that the proposed optimization algorithm can quickly and accurately identify parameters such as resistance, inductance, and magnetic chain of the PMSM, with significant improvements in convergence algebra, identification accuracy and stability.
Go to article

Authors and Affiliations

Xiaoliang Yang
1 2
ORCID: ORCID
Yuyue Cui
1 2
Lianhua Jia
3
Zhihong Sun
3
Peng Zhang
3
ORCID: ORCID
Jiane Zhao
4
Rui Wang
1 2
ORCID: ORCID

  1. School of Electrical and Information Engineer, Zhengzhou University of Light Industry, Zhengzhou, China
  2. Henan Key Lab of Information based Electrical Appliances, Zhengzhou, China
  3. China Railway Engineering Equipment Group Co. Ltd, Zhengzhou, China
  4. School of Electrical and Electronic Engineering, Zhengzhou University of Science and Technology, Zhengzhou, China
Download PDF Download RIS Download Bibtex

Abstract

The artificial bee colony (ABC) intelligence algorithm is widely applied to solve multi-variable function optimization problems. In order to accurately identify the parameters of the surface-mounted permanent magnet synchronous motor (SPMSM), this paper proposes an improved ABC optimization method based on vector control to solve the multi-parameter identification problem of the PMSM. Because of the shortcomings of the existing parameter identification algorithms, such as high computational complexity and data saturation, the ABC algorithm is applied for the multi-parameter identification of the PMSM for the first time. In order to further improve the search speed of the ABC algorithm and avoid falling into the local optimum, Euclidean distance is introduced into the ABC algorithm to search more efficiently in the feasible region. Applying the improved algorithm to multi-parameter identification of the PMSM, this method only needs to sample the stator current and voltage signals of the motor. Combined with the fitness function, the online identification of the PMSM can be achieved. The simulation and experimental results show that the ABC algorithm can quickly identify the motor stator resistance, inductance and flux linkage. In addition, the ABC algorithm improved by Euclidean distance has faster convergence speed and smaller steady-state error for the identification results of stator resistance, inductance and flux linkage.
Go to article

Bibliography

[1] Boileau T., Leboeuf N., Nahid-Mobarakeh B., Online identification of PMSM parameters: parameter identifiability and estimator comparative study, IEEE Transactions on Industry Applications, vol. 47, no. 4, pp. 1944–1957 (2011), DOI: 10.1109/TIA.2011.2155010.
[2] Ichikawa S., Tomita M., Doki S., Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory, IEEE Transactions on Industrial Electronics, vol. 53, no. 2, pp. 363–372 (2006), DOI: 10.1109/TIE.2006.870875.
[3] Jian-fei S., Bao-jun G., Yan-ling L., Research of parameter identification of permanent magnet synchronous motor online, Electric Machines and Control, vol. 22, no. 3, pp. 17–24 (2018), DOI: 10.15938/j.emc.2018.03.003.
[4] Fan S., LuoW., Zou J., A hybrid speed sensorless control strategy for PMSM based on MRAS and fuzzy control, Proceedings of 7th International Power Electronics and Motion Control Conference, Harbin, China, pp. 2976–2980 (2012), DOI: 10.1109/IPEMC.2012.6259344.
[5] Shi Y., Sun K., Huang L., Online identification of permanent magnet flux based on extended Kalman filter for IPMSM drive with position sensorless control, IEEE Transactions on Industrial Electronics, vol. 59, no. 11, pp. 4169–4178 (2012), DOI: 10.1109/TIE.2011.2168792.
[6] Liu K., Zhang J., Adaline neural network based online parameter estimation for surface-mounted permanent magnet synchronous machines, Proceedings of the CSEE, vol. 30, no. 30, pp. 68–73 (2010).
[7] Gu X., Hu S., Shi T., Muti-parameter decoupling online identification of permanent magnet synchronous motor based on neural network, Transactions of China Electrotechnical Society, vol. 30, no. 6, pp. 114–121 (2015).
[8] Liwei Z., Peng Z., Yuefeng L., Parameter identification of permanent magnet synchronous motor based on variable step-size Adaline neural network, Transactions of China Electrotechnical Society, vol. 33, no. z 2, pp. 377–384 (2018).
[9] Peerez J.N.H., Hernandez O.S., Caporal R.M., Parameter identification of a permanent magnet synchronous machine based on current decay test and particle swarm optimization, IEEE Latin America Transactions, vol. 11, no. 5, pp. 1176–1181 (2013), DOI: 10.1109/TLA.2013.6684392.
[10] Liu Z., Wei H., Zhong Q., Parameter estimation for VSI-Fed PMSM based on a dynamic PSO with learning strategies, IEEE Transactions on Power Electronics, vol. 32, no. 4, pp. 3154–3165 (2017), DOI: 10.1109/TPEL.2016.2572186.
[11] Liu Z., Wei H., Li X., Global identification of electrical and mechanical parameters in PMSM drive based on dynamic self-learning PSO, IEEE Transactions on Power Electronics, vol. 33, no. 12, pp. 10858–10871 (2018), DOI: 10.1109/TPEL.2018.2801331.
[12] Sandre-Hernandez O., Morales-Caporal R., Rangel-Magdaleno J., Parameter identification of PMSMs using experimental measurements and a PSO algorithm, IEEE Transactions on Instrumentation and Measurement, vol. 64, no. 8, pp. 2146–2154 (2015), DOI: 10.1109/TIM.2015.2390958.
[13] Liu X., Hu W., Ding W., Research on multi-parameter identification method of permanent magnet synchronous motor, Transactions of China Electrotechnical Society, vol. 35, no. 6, pp. 1198–1207 (2020).
[14] Liu C., Zhou S., Liu K., Permanent magnet synchronous motor multiple parameter identification and temperature monitoring based on binary-modal adaptive wavelet particle swarm optimization, Acta Automatica Sinica, vol. 39, no. 12, pp. 2121–2130 (2013), DOI: 10.3724/SP.J.1004.2013.02121.
[15] Fu X., Gu H., Chen G., Permanent magnet synchronous motors parameters identification based on Cauchy mutation particle swarm optimization, Transactions of China Electrotechnical Society, vol. 29, no. 5, pp. 127–131 (2014).
[16] Guo-han L., Jing Z., Zhao-hua L., Kui-yin Z., Parameter identification of PMSM using improved comprehensive learning particle swarm optimization, Electric Machines and Control, vol. 19, no. 1, pp. 51–57 (2015).
[17] San-yang L., Ping Z., Ming-min Z., Artificial bee colony algorithm based on local search, Control and Decision, vol. 29, no. 1, pp. 123–128 (2014).
[18] Ding X., Liu G., Du M., Efficiency improvement of overall PMSM-Inverter system based on artificial bee colony algorithm under full power range, IEEE Transactions on Magnetics, vol. 52, no. 7, pp. 1–4 (2016), DOI: 10.1109/TMAG.2016.2526614.
[19] Zawilak T., Influence of rotor’s cage resistance on demagnetization process in the line start permanent magnet synchronous motor, Archives of Electrical Engineering, vol. 69, no. 2, pp. 249–258 (2020), DOI: 10.24425/aee.2020.133023.

Go to article

Authors and Affiliations

Chunli Wu
1
ORCID: ORCID
Shuai Jiang
1
Chunyuan Bian
1

  1. College of Information Science and Engineering, Northeastern University, China

This page uses 'cookies'. Learn more