Search results

Filters

  • Journals
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A method of planning collision-free trajectory for a mobile manipulator tracking a line section path is presented. The reference trajectory of a mobile platform is not needed, mechanical and control constraints are taken into account. The method is based on a penalty function approach and a redundancy resolution at the acceleration level. Nonholonomic constraints in a Pfaffian form are explicitly incorporated to the control algorithm. The problem is shown to be equivalent to some point-to-point control problem whose solution may be easier determined. The motion of the mobile manipulator is planned in order to maximise the manipulability measure, thus to avoid manipulator singularities. A computer example involving a mobile manipulator consisting of a nonholonomic platform (2,0) class and a 3 DOF RPR type holonomic manipulator operating in a three-dimensional task space is also presented.

Go to article

Authors and Affiliations

Grzegorz Pajak
Iwona Pajak
Download PDF Download RIS Download Bibtex

Abstract

This paper presents control method for multiple two-wheeled mobile robots moving in formation. Trajectory tracking algorithm from [7] is extended by collision avoidance, and is applied to the different type of formation task: each robot in the formation mimics motion of the virtual leader with a certain displacement. Each robot avoids collisions with other robots and circular shaped, static obstacles existing in the environment. Artificial potential functions are used to generate repulsive component of the control. Stability analysis of the closed-loop system is based on Lyapunov-like function. Effectiveness of the proposed algorithm is illustrated by simulation results.

Go to article

Authors and Affiliations

W. Kowalczyk
K. Kozłowski
Download PDF Download RIS Download Bibtex

Abstract

In this paper an application of the Serret–Frenet parametrization of a curve to the path following task is presented. This curvilinear parametrization method is used to obtain a control object description relative to the desired curve defined in the three-dimensional space. In order to derive proper equations, the innovative approach of the non-orthogonal projection of a control object on the given path is investigated. The non-orthogonal projection allows to design a global control algorithm. The proposed solution results in a cascade structure of the control system. Thus, the backstepping integrator algorithm was applied to create a control law. Due to the partial knowledge of control object dynamic parameters, an adaptive algorithm is taken into account. Theoretical considerations are confirmed with simulation study. Conducted simulations illustrated following paths at different levels of complexity by a holonomic non-redundant manipulator with a fixed base.
Go to article

Authors and Affiliations

Alicja Mazur
1
Filip Dyba
1

  1. Department of Cybernetics and Robotics, Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, Janiszewskiego Street 11/17, Wrocław 50-372, Poland

This page uses 'cookies'. Learn more