Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 13
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Petrographic and physico-chemical analyses of ashes are carried out on a large scale and presented in numerous scientific papers. The mentioned ashes are obtained from filters and electrostatic precipitators mounted in large industrial installations. The large-scale analysis of the ashes obtained directly from grate furnaces or blast furnaces mounted in low-power boilers started with combating smog and low-stack emissions. The collection of ash samples from household furnaces usually involves the analysis of the combustion of waste in low-power boilers. This is justified in the case of old type boilers, which were designed to use virtually any fuel. Currently, new types of boilers, designed to burn dedicated fuels, are offered on the market. The aim is to use only renewable fuels (biomass) or fossil fuels with high quality parameters, which are more environment-friendly, e.g. eco-pea coal, lignite briquettes, or peat briquettes. The authors of the study focused on examining the ash obtained from boilers for burning wood pellets by performing microscopic analysis of residues after biomass combustion. The above mentioned analysis provides a comprehensive information on the efficiency of the combustion process, the content of contaminants remaining in the ash, and the suitability of ash for other applications. The entire process, from the moment of collecting the samples to the execution of the analysis takes up to 12 hours, which ensures a quick decision on furnace adjustment or fuel change. The ash components were determined based on the results obtained by the Fly-Ash Working Group of the International Committee for Coal and Organic Petrology (ICCP). The mentioned classification has been supplemented with new key elements occurring in ashes resulting from the combustion of wood pellets in household boilers. This allowed determining the percentage content of characteristic components in the tested material, which can be used as a specific benchmark when issuing opinions on the quality and efficiency of the boiler and the combusted pellets.

Go to article

Authors and Affiliations

Zbigniew Jelonek
Adam Nocoń
Iwona Jelonek
Marta Jach-Nocoń
Download PDF Download RIS Download Bibtex

Abstract

The impact of the fuel feeding mode (continuous or periodic with different stand-by/operation time ratios) on carbon monoxide (CO) and nitrogen oxides (NO, NOx) concentration values in the flue gas was analysed for coniferous wood pellet firing. Experiments were performed in a 25 kW water boiler equipped with an over-fed wood pellet furnace located in a full scale heat station simulating real-life conditions. Influence of oxygen concentration and temperature in the combustion chamber on carbon monoxide and nitrogen oxide concentrations was presented in diagrams. Dust and hydrocarbon concentrations were also monitored. It was concluded that the commonly used periodic fuel supply does not necessarily cause a significant increase of carbon monoxide concentration, as compared to the continuous fuel feeding mode. Continuous fuel supply can even induce higher carbon monoxide concentrations when fuel mass stream is not chosen properly. Each time new fuel type is used in a specific furnace, one should perform experiments to determine the adequate settings (stand-by/operation time ratio, fuel mass streams, air stream) to obtain the optimal, lowest possible emission for a certain boiler heat output

Go to article

Authors and Affiliations

Marek Juszczak
Download PDF Download RIS Download Bibtex

Abstract

The work concerns the dynamic behaviour of a porous, isothermal catalyst pellet in which a simultaneous chemical reaction, diffusion and adsorption take place. The impact of the reactant adsorption onto the pellet dynamics was evaluated. A linear isotherm and a non-linear Freundlich isotherm were considered. Responses of the pellet to sinusoidal variations of the reactant concentration in a bulk gas were examined. It was demonstrated that the dynamics of the pellet is significantly affected both by accounting for the adsorption and by the frequency of the bulk concentration variations. The sorption phenomenon causes damping of the concentration oscillations inside the pellet and damping of its effectiveness factor oscillations. Depending on the frequency of the concentration oscillations in the bulk, the remarkable oscillations can involve an entire volume of the pellet or its portion in the vicinity of the external surface.

Go to article

Authors and Affiliations

Katarzyna Bizon
Bolesław Tabiś
Download PDF Download RIS Download Bibtex

Abstract

Wood pellets are classified as a solid biomass type. They are one of the most popular bio-heating fuels used in Europe, especially in the small heating sector, where pellets are burned in low-power domestic boilers. The pellets and automatic pellet-fired heating devices gained popularity due to the increasing air pollution (smog) problem and the low emission limiting campaigns associated with it. Wood pellets are formed as a result of small forestry particles mechanical compression (mainly conifers originated) and they are listed among renewable energy sources. The purpose of the presented studies was to compare the quality of wood pellets used for pellet-fired boilers and to identify, qualitatively and quantitatively, impurities marked in the samples obtained from the domestic market. The application of petrographic analyses, applied so far in relation to fossil fuels, is a presented work innovation for wood pellets. The microscopic analyses were performed on both certified (ENplus/DINplus) and uncertified wood pellets available on the market. Unfortunately, the analysis revealed that the quality requirements were not met, because of the unacceptable contamination presence. The unacceptable organic inclusions in the analyzed samples are fossil coals and their derivatives, coke, and polymeric materials of natural origin. Unacceptable inorganic inclusions determined in the analyzed samples were: glass, slag, rust, pieces of metal, stone powder, plastic, and polymeric materials of inorganic origin.

Go to article

Authors and Affiliations

Adam Nocoń
Iwona Jelonek
Marta Jach-Nocoń
Zbigniew Jelonek
Download PDF Download RIS Download Bibtex

Abstract

Wood pellets, commonly referred to as biomass fuel, are increasingly used in heating and district heating in the European Union countries, including Poland. Their use in class 5 and/or Ecodesign boilers enables an individual consumer to use energy from renewable sources, reduce the environmental burden by reducing the emission of harmful compounds, and provides a sense of comfort by automating the boiler system. The article presents the current situation in the global wood pellet market, describes the basic quality standards applicable to this fuel during production, and indicates the difficulties in the implementation of programs co-financing the replacement of obsolete coal-fired boilers with automatic class 5 biomass-fired boilers. The research presented in this article is focused on the presence of contaminants in the DIN Plus, EN Plus, and A1 pellets, as well as in non-certified pellets. The analysis has shown that the use of wood pellets containing prohibited substances negatively affects boiler operation and contributes to the formation of slag and the emission of harmful compounds, making the discussed fuel non-ecological.

Go to article

Authors and Affiliations

Marta Jach-Nocoń
Adam Nocoń
Tomasz Mirowski
Iwona Jelonek
ORCID: ORCID
Zbigniew Jelonek
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Biomass is one of the most frequently used sources of renewable energy. For centuries, wood has been used by people to heat their homes, and nowadays it is also used to generate electricity. The article discusses legal issues related to biomass, classification of biomass for energy purposes, quality parameters of selected ecological fuels, quality requirements for biomass, as well as biomass trade in the world. The article compares the quality requirements for biomass purchased by individual companies from the power sector (mainly dimensions, calorific value, moisture content, ash content, sulfur and chlorine). An analysis of the price of wood pellets on international markets, represented by the biomass stock exchanges: RBCN, EEX and BALTPOOL was also performed. The market analysis clearly shows that the international market for industrial pellets is dominated by intercontinental trade, which mainly concerns exchanges between the United States of America as a producer and Europe as a consumer. The largest amount of biomass is imported by the United Kingdom, mainly for its Drax biomass power plant, and this biomass comes from the USA and Canada. In addition to Great Britain, significant importers of wood pellets are the Netherlands, Belgium and Denmark. Judging by the interest of Polish energy companies in the purchase of biomass, also in Poland, the development of the biomass market should be expected.

Go to article

Authors and Affiliations

Tadeusz Olkuski
Katarzyna Stala-Szlugaj
Download PDF Download RIS Download Bibtex

Abstract

The changes in the domestic solid fuel market (including forecasted increases in the fuel prices) and the growing requirements related to actual environmental standards, result in increased interest in renewable energy sources, such as biomass, wind and solar energy. These sources will allow to achieve reduction in the CO2 emission, and consequently – avoid environmental costs after 2020. Therefore, the development of distributed energy systems, based on the use of biomass boilers, gas boilers and high efficiency combined heat and power units, will enable the fulfillment of current standards in the field of energy efficiency and emission of pollutants to the atmosphere. It should be emphasized that the actions taken to reduce emissions (e.g. anti-smog act) will contribute to reducing coal consumption in the municipal and housing sector (households, agriculture and other customers) in favor of biomass and other renewable energy sources. The article reviews selected biomass technologies:

- fluidized, dust and grate boilers,

- straw-fired boilers,

- cogeneration systems powered by biomass,

- torrefaction and biomass carbonisation.

The mentioned technologies are characterized by a high potential of in the field of dynamic development and practical application in the coming years. Thus, they can improve difficult situation in the distributed energy sector with a capacity up to 50 MW.

Go to article

Authors and Affiliations

Tomasz Mirowski
Eugeniusz Mokrzycki
Mariusz Filipowicz
Krzysztof Sornek
Download PDF Download RIS Download Bibtex

Abstract

Agricultural biogas plants are not only a place for processing waste resulting from animal husbandry, but also for generating electricity and heat as well as organic fertiliser. In a four-year experiment, pellets were used as organic fertiliser in the establishment of an experiment with fast-growing oxytrees. The study aimed to investigate the growth and stem thickness increment, overwintering in the first and subsequent years of cultivation under the conditions of north-eastern Poland.
The dried digestate and the pellets made from it were characterised by a high content of macroelements (N – 1,95%, P2O5 – 1,1%, K2O – 1,3%). The applied pellet from an agricultural biogas plant under oxytree seedlings due to its slow decomposition had a good effect on the growth of oxytrees in the second and third years. The average growth of oxytrees in the second year was 209.7 cm, and in the third year, 246.8 cm. The growth of oxytrees fertilised with pellets made from the digestate of an agricultural biogas plant was 13% higher than that of trees growing on the control strip.
Go to article

Bibliography

ABURAKER J., CEDERLUND H., ARTHURSON V., PELL M. 2013. Bacterial community structure and microbial activity in different soils amended with biogas residues and cattle slurry. Applied Soil Ecology. Vol. 72 p. 171–180. DOI 10.1016/j.apsoil.2013.07.002.

BAUZA-KASZEWSKA J., SZALA B., BREZA-BORUTA B., LIGOCKA A., KROPLEWSKA M. 2017. Wpływ nawożenia pofermentem z biogazowni na kształtowanie liczebności wybranych grup drobnoustrojów w gle-bie płowej [Influence of fertilization with biogas plant digestate on shaping the abundance of selected microbial groups in lessive soil]. Woda-Środowisko-Obszary Wiejskie. T. 17. Z. 2(58) p. 15– 26.

BIAŁOWIEC A., WIŚNIEWSKI D., PULKA J., SIUDAK M., JAKUBOWSKI B., MYŚLAK B. 2015. Biosuszenie pofermentu z biogazowni rolniczych [Biosynthesis of digestate from agricultural biogas plants]. Środkowo-Pomorskie Towarzystwo Naukowe Ochrony Środowiska. Rocznik Ochrona Środowiska. Vol. 17 p. 1554–1568.

Gramwzielone 2015. Nowa biogazownia w woj. podlaskim [The new biogas plant in Podlaskie Voivodeship] [online]. [Access 28.02.2021]. Available at: https://www.gramwzielone.pl/bioenergia/16643/nowa-biogazownia-w-woj-podlaskim

JADCZYSZYN T., WINIARSKI R. 2017. Wykorzystanie odpadów pofermen-tacyjnych z biogazowni rolniczych do nawożenia [Use of digestate from agricultural biogas plants for fertilization]. Studia i Raporty IUNG PIB. Z. 53(7) p. 105–118. DOI 10.26114/sir.iung.2017.53.08.

KNAUF M., FRÜHWALD A. 2015. Die Zukunft der deutschen Holzwerk-stoffindustrie [The future development of the German wood- based panel industry]. Holztechnologie. Nr. 56 p. 5–12.

KOWALCZYK-JUŚKO A., SZYMAŃSKA M. 2015. Poferment nawozem dla rolnictwa [Poferment fertilizer for agriculture]. Warszawa. Fundacja Programów Pomocy dla Rolnictwa FAPA. ISBN 978- 83-937363-6-2 pp. 60.

KOWR 2021. Rejestr wytwórców biogazu rolniczego [Angielski] [online]. Warszawa. Krajowy Ośrodek Wsparcia Rolnictwa. [Access 13.09.2021]. Available at: https://www.kowr.gov.pl/odnawialne-zrodla-energii/biogaz-rolniczy/wytworcy-biogazu-rolnic-zego/rejestr-wytworcow-biogazu-rolniczego

LISOWSKI J., BORUSIEWICZ A. 2019. Comparison of yield and energy values of Pennsylvania mallow with giant miscanthus in three consecutive years of cultivation. Fragmenta Agronomica. Vol. 36(4) p. 1–7.

LISOWSKI J., PORWISIAK H. 2018. Cechy biometryczne drzewa oxytree oraz wykorzystanie szybkości wzrostu jako produkcja biomasy dla potrzeb energetyki [Biometric characteristics of oxytree tree and the use of growth rate as biomass production for energy purposes]. Zeszyty Naukowe Wyższej Szkoły Agrobiznesu w Łomży. Nr 69 p. 53–61.

LÓPEZ SERRANO F.R. 2015. Informe provisional de simulación de la productividad De una plantación hipotética de Paulownia elongata x fortunei cv in Vitro 112® [Interim productivity simulation report of a hypothetical plantation of Paulownia elongata x fortunei cv in Vitro 112®. Renewable Energy Research Institute. Department of Agroforestry Technology and Science and Genetics – Castilla La Mancha University pp. 6.

LOŠÁK T., HLUŠEK J., VÁLKA T., ELBL J. , VÍTĚZ T., BĚLÍKOVÁ B., VON BENNEWITZ E. 2016. The effect of fertilisation with digestate on kohlrabi yields and quality. Plant, Soil and Environment. Vol. 62. No. 6 p. 274–278. DOI 10.17221/16/2016-PSE.

ŁAGOCKA A., KAMIŃSKI M., CHOLEWIŃSKI M., POSPOLITA W. 2016. Korzyści ekologiczne ze stosowania pofermentu z biogazowni rolniczych jako nawozu organicznego [Health and environmental benefits of utilization of post-fermentation pulp from agricultural biogas plants as a natural fertilizer]. Kosmos. Nr 65. Nr 4 p. 601–607.

MATA-ALVAREZ J., DOSTA J., ROMERO-GÜIZA M.S., FONOLL X., PECES M., ASTALS S. 2014. A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews. Vol. 36(C) p. 412–427.

MRiRW 2020. Odpowiedź na zapytanie nr 355 z dnia 28 lutego 2020 Pani Poseł Urszuli Pasławskiej w sprawie biogazowni rolniczych [Reply to Question No 355 of 28 February 2020 by Urszula Pasławska on agricultural biogas plants] [online]. Znak sprawy: KS.eb.058.1.2020. [Access 15.08.2020]. Available at: http://orka2.sejm.gov.pl/INT9.nsf/klucz/ATTBNAJ43/%24FILE/z00335-o1.pdf

OSChR 2016. Sprawozdanie z badań Okręgowej Stacji Chemiczno- Rolniczej w Warszawie z dnia 04.01.2016 r. [Research report form District Chemical and Agricultural Station in Warsaw dated 04.01.2016]. [Unpublished].

Rozporządzenie Rady Ministrów z dnia 12 lutego 2020 r. w sprawie przyjęcia „Programu działań mających na celu zmniejszenie zanieczyszczenia wód azotanami pochodzącymi ze źródeł rolnic-zych oraz zapobieganie dalszemu zanieczyszczeniu” [Regulation of the Council of Ministers of 12 February 2020 on the adoption of the ”Programme of measures to reduce pollution of waters by nitrates from agricultural sources and to prevent further pollution”]. Dz.U. 2020 poz. 243.

SAPP M., HARRISON M., HANY U., CHARLTON A., THWAITES R. 2015. Comparing the effect of digestate and chemical fertiliser on soil bacteria. Applied Soil Ecology. Vol. 86 p. 1–9. DOI 10.1016/j.apsoil.2014.10.004.
Go to article

Authors and Affiliations

Zbigniew Skibko
1
ORCID: ORCID
Waclaw Romaniuk
2
ORCID: ORCID
Andrzej Borusiewicz
3
ORCID: ORCID
Henryk Porwisiak
3
ORCID: ORCID
Janusz Lisowski
3
ORCID: ORCID

  1. Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska 45 D, 15-351 Bialystok, Poland
  2. Institute of Technology and Life Sciences – National Research Insitute, Falenty, Poland
  3. The Higher School of Agribusiness in Lomza, Poland
Download PDF Download RIS Download Bibtex

Abstract

This study is devoted to synthesis and characterization of uranium dioxide microspheres (Ø < 100 µm) and pellets by application of powder-free process called the Complex Sol-Gel Process. The precursors of prepared sols were ascorbic acid solution with dissolved a freshly precipitated ammonium diuranate. The microspheres of uranyl-ascorbate gel were obtained using the ICHTJ Process. The pellets were formed by pressing and sintering of uranium dioxide powder. Studies allowed determining an optimal heat treatment of calcination, reduction and sintering processes at temperatures of 700°C, 900°C and 1300°C, respectively. The main parameters which play a key role in the process of synthesis method and features of the pellets and microspheres of uranium dioxide are described in this article.

Go to article

Authors and Affiliations

M. Brykala
M. Rogowski
D. Wawszczak
T. Olczak
T. Smolinski
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a test stand equipped, among others, with two boilers intended for the combustion of solid fuels. The first is a single-fuel boiler designed to burn wood pellets only. The second is a multi-fuel boiler intended for the combustion of mainly hard coal (basic fuel) with the grain size of 0.005–0.025 m. Wood pellets can also be fired in this boiler, which in such a case are treated as a substitute fuel. There is a developed and verified algorithm for the control of the multi-fuel boiler operation in a wide range of loads for the basic fuel. However, for the substitute fuel (wood pellets) there are no documented and confirmed results of such testing. The paper presents selected results of testing performed during the combustion of wood pellets in a multi-fuel automatically stoked boiler. Several measuring series were carried out, for which optimal operating conditions were indicated. These conditions may serve as the basis for the development of the boiler operation control algorithm. A detailed analysis was carried out of the flue gas temperatures obtained at the outlet of the boiler combustion chamber and of the contents of carbon monoxide and oxygen in the boiler flue gases.
Go to article

Bibliography

[1] Announcement of the Sejm Speaker of the Republic of Poland on the promulgation of a consolidated text of the Act on renewable energy sources. Journal of Laws – Republic of Poland (Dziennik Ustaw Rzeczypospolitej Polskiej) 2021, Item 610 (in Polish).
[2] Regulation of the Minister of Development and Finance on the requirements for solid-fuel boilers. Journal of Laws – Republic of Poland (Dziennik Ustaw Rzeczypospolitej Polskiej) 2017, Item 1690 (in Polish).
[3] EN 303-5:2021: Heating boilers – Part 5: Heating boilers for solid fuels, manually and automatically stoked, nominal heat output of up to 500 kW – Terminology, requirements, testing and marking.
[4] Poland’s Energy Policy until 2040. Ministry of Climate and the Environment, Appendix to Resolution 22/2021 of the Council of Ministers, 2021 (in Polish).
[5] Commission Regulation (EU) 2019/2146 amending Regulation (EC) 1099/2008 of the European Parliament and of the Council on energy statistics, as regards the implementation of updates for the annual, monthly and short-term monthly energy statistics. OJ L 325, 16.12.2019.
[6] Directive (EU) 2018/2001 of the European Parliament and of the Council on the promotion of the use of energy from renewable sources. OJ L 328, 21.12.2018.
[7] Zima W., Ojczyk G.: Current status and prospects for solid multi-fuel boilers of low power. Rynek Energii 5(2013), 108, 50–56 (in Polish).
[8] Juszczak M., Pałaszynska K., Rolirad K., Janicki M., Szczechowiak E.: Attempt to use additives increasing ash melting point while firing agricultural biomass pellets in order to avoid slag production in the furnace. Ciepłownictwo, Ogrzewnictwo, Wentylacja 48(2017), 8, 320–326 (in Polish).
[9] Ciupek B., Urbaniak R., Judt W.: Experimental research of changes in co, nox and pm concentrations in flue gases during combustion of wood pellets with wheat seeds. Ciepłownictwo, Ogrzewnictwo, Wentylacja 50(2019), 2, 56–61.
[10] Orłowska A., Sroka K.: Changes in legal regulations concerning supplying households with heat. Rynek Energii 140(2019), 1, 38–47.
[11] Zima W., Ojczyk G.: Analysis of combustion of wood pellets as a substitute fuel in a low-power boiler. Arch. Combust. 35(2015), 2, 117–130.
[12] Ziebik A., Stanek W.: Energy effciency – selected thermo-ecological problems. Arch. Thermodyn. 41(2020), 2, 277–299.
[13] https://www.herz-energie.at/pl/ (accessed 6 Sept. 2021).
[14] http://www.ogniwobiecz.com.pl/ (accessed 12 Sept. 2021).
[15] Ecological Safety Mark: Certificate 1035. Inst. Chem. Process. Coal, Zabrze 2009 (in Polish).
[16] https://www.keison.co.uk/ (accessed 17 Aug. 2021).
[17] Kuznetsov N.V., Mitor V.V., Dubovsky I.E., Karasina E.S. (Eds.): Thermal Calculation of Steam Boilers. Normative Method (2nd Edn.). Energia, Moscow 1973 (in Russian).
[18] Rutkowski Ł., Szczygieł I.: Calculation of the furnace exit gas temperature of stoker fired boilers. Arch. Thermodyn. 42(2021), 3, 3–24.


Go to article

Authors and Affiliations

Wiesław Zima
1
Grzegorz Ojczyk
2

  1. Cracow University of Technology, Department of Energy, al. Jana Pawła II 37, 31-864 Kraków, Poland
  2. MTHE Modern Technologies in Heating Engineering, Młynska-Boczna 7/2, 31-470 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Findings. The function of breaking deformations within the rock mass in the bottomhole of a hydromechanical drilling well is dependent on various technological means and methods. A sequential analysis has been conducted to identify the most influential factors in this process. Positive features of hydromechanical drilling have been outlined from the viewpoint of effective intensification of basic technical and economic parameters of the process of well construction with different purposes. Complete operational similarity and technological interconnection of a mechanism of the formation of different parts of a hydromechanical drilling well have been shown in terms of their stipulation by the properties of rock formations and mode support of a well construction process. Top-priority of a hydromechanical drilling type has been proved to generate as many parameters of dynamic effect on rock mass, which results in the increasing scope of bottomhole breaking processes. Attention has been paid to the study of the problem of tool support for drilling operations from the viewpoint of tracing the nature of bottomhole processes running in terms of different technical and technological factors. The possibility and necessity of using surface-active substances (SAS) as the main activators of positive deformation interactions in the “metal pellets – rock” pair have been proved and substantiated; use will be based on the developed methodological approaches of rational selection of a component-concentration composition of a breaking medium.
Originality. The efficiency of a hydromechanical drilling type is stipulated by the degree of dynamic effect on the rock bottomhole; depending on its geological-mineralogical and physicomechanical features, it can be intensified by increasing frequency of impacting, interpretation of the effecting mechanism, variation of the cleaning agent type as well as directed activation of the manifestation of surface and interphase interactions.
Practical implications. The represented results of analytical and laboratory-experimental studies are the basis for the development of methodological foundations to elaborate the mode parameters of the technology of hydromechanical drilling for the construction of wells. They belong to the basic initial data applied while developing the design and working characteristics of the corresponding modernised operating members.

Go to article

Authors and Affiliations

Andrii Ihnatov
1
ORCID: ORCID
Jamil Sami Haddad
2
ORCID: ORCID
Yevhenii Koroviaka
1
ORCID: ORCID
Oleksandr Aziukovskyi
1
ORCID: ORCID
Valerii Rastsvietaiev
1
ORCID: ORCID
Olena Dmytruk
1
ORCID: ORCID

  1. Dnipro University of Technology, Ukraine
  2. Al-Balqa Applied University, Jordan
Download PDF Download RIS Download Bibtex

Abstract

The thermal expansion of a ZrO2-20 mol% Gd2O3 pellet has been systematically investigated using a thermo-mechanical analyzer in the temperature range of 293-1773 K. Variations in the thermal expansion coefficient and density upon temperature change were calculated using the thermal expansion data. The average linear thermal expansion coefficient of the ZrO2-20 mol% Gd2O3 pellet was found to be 9.522 × 10–6 K–1 in the range of 298-1073 K. This value is smaller than that of ZrO2 and larger than that of Gd2O3. Further, with an increase in temperature to 1773 K, the density of ZrO2-20 mol% Gd2O3 pellet was found to decrease to 94.98 % of the initial density at 293 K.
Go to article

Authors and Affiliations

Kweonho Kang
1
ORCID: ORCID
Seok-Min Hong
1
ORCID: ORCID
Changhwa Lee
1
ORCID: ORCID
Yongjun Cho
1
ORCID: ORCID

  1. Korea Atomic Energy Research Institute, Daejeon, Republic of Korea

This page uses 'cookies'. Learn more