Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, dynamic response improvement of the grid connected hybrid system comprising of the wind power generation system (WPGS) and the photovoltaic (PV) are investigated under some critical circumstances. In order to maximize the output of solar arrays, a maximum power point tracking (MPPT) technique is presented. In this paper, an intelligent control technique using the artificial neural network (ANN) and the genetic algorithm (GA) are proposed to control the MPPT for a PV system under varying irradiation and temperature conditions. The ANN-GA control method is compared with the perturb and observe (P&O), the incremental conductance (IC) and the fuzzy logic methods. In other words, the data is optimized by GA and then, these optimum values are used in ANN. The results are indicated the ANN-GA is better and more reliable method in comparison with the conventional algorithms. The allocation of a pitch angle strategy based on the fuzzy logic controller (FLC) and comparison with conventional PI controller in high rated wind speed areas are carried out. Moreover, the pitch angle based on FLC with the wind speed and active power as the inputs can have faster response that lead to smoother power curves, improving the dynamic performance of the wind turbine and prevent the mechanical fatigues of the generator.

Go to article

Authors and Affiliations

Maziar Izadbakhsh
Alireza Rezvani
Majid Gandomkar
Download PDF Download RIS Download Bibtex

Abstract

Wind energy has achieved prominence in renewable energy production. There fore, it is necessary to develop a diagnosis system and fault-tolerant control to protect the system and to prevent unscheduled shutdowns. The presented study aims to provide an experimental analysis of a speed sensor fault by hybrid active fault-tolerant control (AFTC) for a wind energy conversion system (WECS) based on a permanent magnet synchronous generator (PMSG). The hybrid AFTC switches between a traditional controller based on proportional integral (PI) controllers under normal conditions and a robust backstepping controller system without a speed sensor to avoid any deterioration caused by the sensor fault. A sliding mode observer is used to estimate the PMSG rotor position. The proposed controller architecture can be designed for performance and robustness separately. Finally, the proposed methodwas successfully tested in an experimental set up using a dSPACE 1104 platform. In this experimental system, the wind turbine with a generator connection via a mechanical gear is emulated by a PMSM engine with controled speed through a voltage inverter. The obtained experimental results show clearly that the proposed method is able to guarantee service production continuity for the WECS in adequate transition.

Go to article

Authors and Affiliations

Ahmed Tahri
Said Hassaine
Sandrine Moreau

This page uses 'cookies'. Learn more