Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 40
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article presents the research into hygienizing process of chicken manure using calcium peroxide (CaO2) as an environmentally friendly biological deactivation agent. The influence of the addition of CaO2 to chicken manure on the bioavailability of phosphorus was also analyzed. The process of biological deactivation using CaO2, CaO and Ca(OH)2 agents was analyzed applying the disk diffusion method. To optimize the effect of the hygienizing parameters, (CaO2 concentration, pH, temperature and time) on the reduction of Enterobacteriaceae count the Taguchi method was applied. The content of bioavailable phosphorus was measured with the Egner-Riehm method and determined with spectrophotometry. The reduction in bacterial count followed an increase in the concentration of CaO2 in a sample. The optimal experimental conditions (CaO2=10.5 wt.%, pH=9.5, T=40°C, t=180 h) enabled a significant decrease in the Enterobacteriaceae count, from 107 cfu/g to 102 cfu/g. Analysis of the samples with Egner-Riehm method showed that the phosphorus content decreased with the addition of biocide CaO2: from 26.6 mg/l (for 3.5 wt.%) to 3.5 mg/l (for 10.5 wt.%). These values were slightly higher than the content of phosphorus deactivated with Ca(OH)2 i.e., from 11.25 mg/l (for 3.5 wt.%) to 4.49 mg/l (for 10.5 wt.%). The application of CaO2 for hygienizing chicken manure enables effective reduction of Enterobacteriaceae count to an acceptable level (below 1000 cfu/g). In comparison with the traditional techniques of hygienization, the application of CaO2 has a positive effect on the recovery of bioavailable phosphorus.

Go to article

Authors and Affiliations

Angelika Więckol-Ryk
1
Barbara Białecka
2
ORCID: ORCID
Maciej Thomas
3

  1. Central Mining Institute, Department of Risk Assessment and Industrial Safety, Poland
  2. Central Mining Institute, Department of Water Protection, Poland
  3. Chemiqua Water & Wastewater Company, Poland
Download PDF Download RIS Download Bibtex

Abstract

The contents of total P and its bioavailable forms. as well as of Fe, Al, Mn, Ca, and OM in the bottom sediments of the Solina-Myczkowce (S-E Poland) cascade of reservoirs, are presented. Notwithstanding a relatively low calcium content, it is the apatite fraction that accounts for the largest share of total phosphorus in the shallower parts of the Solina and Myczkowce Reservoirs. In turn, while contents of iron and aluminium (and manganese in the Solina Reservoir) are high, the fraction containing non-apatite inorganic phosphorus accounts for the smallest portion of the total phosphorus in the bottom sediments of both reservoirs. Bottom sediments of the Solina Reservoir are also characterised by significant correlations between total phosphorus content and aluminium content. Otherwise, significant correlations are reported for only some of the stations at each of the reservoirs.
Go to article

Authors and Affiliations

Lilianna Bartoszek
Janusz A. Tomaszek
Download PDF Download RIS Download Bibtex

Abstract

Fossils are a source of great interest, even fascination. They offer evidence of the past existence of living things, somewhat different from life as we know it today. Yet not many fossil-hunters realize that these traces of a bygone past are often a source of radiation.
Go to article

Authors and Affiliations

Magdalena Długosz-Lisiecka
1
Daniel Tyborowski
2

  1. Institute of Applied Radiation Chemistry, Łódź University of Technology
  2. Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszyński Universityin Warsaw
Download PDF Download RIS Download Bibtex

Abstract

The objective of the study was to trace the variability of the hydrochemical conditions in three lakes of the West Pomeranian Voivodeship (Poland) – Starzyca, Maszewskie and Nowogardzkie in the annual cycle. The research was done in 2018–2019, and samples for analysis were collected 4 times a year. All analyses were performed applying standard methods. Such hydrochemical indices were determined as dissolved oxygen, chemical oxygen demand, content of orthophosphates, total phosphorus, nitrite, nitrate, ammonium, chlorophyll a and iron. The study showed that all lakes in the research cycle were characterised by a polymictic type of water mixing, and the trophic level, based on the adopted criteria, indicated advanced eutrophy, which may also be caused by anthropogenic pressure. Oxygen conditions characterised by deoxidation of the waters in the bottom layer in the spring and summer seasons, and clear oxygenation in the surface water layer (in Lake Maszewskie reaching even 188.5% in the spring) confirm the significant advancement of the eutrophication process. The supply of phosphorus and nitrogen in spring from pelagic waters in the waters of the examined lakes influences concentrations of chlorophyll a in the summer. The influence of “internal supply” (bottom waters and bottom sediments) on the amount of nutrients available for autotrophs is clearly visible in the analysed lakes – an increase in nitrogen and mineral phosphorus concentrations in relation to surface waters was observed in the bottom layer.
Go to article

Authors and Affiliations

Agnieszka Tórz
1
ORCID: ORCID
Małgorzata Bonisławska
1
ORCID: ORCID
Arkadiusz Nędzarek
1
ORCID: ORCID
Agnieszka Rybczyk
1
ORCID: ORCID
Adam Tański
1
ORCID: ORCID

  1. West Pomeranian University of Technology, Faculty of Food Sciences and Fisheries, Królewicza Kazimierza St, 4, 71-550 Szczecin, Poland
Download PDF Download RIS Download Bibtex

Abstract

The study presents the results of the research into different phosphorus forms in the bottom sediments of anthropogenic limnic ecosystems i.e. the reservoirs of Pławniowice, Rybnik and Goczałkowice (SP). The bottom sediments of dam reservoirs were investigated by chemical extraction procedure for phosphorus forms. The lowest value of the mean AAP form percentage in the Pławniowice bottom sediments reflected the effect of reclamation with the hypolimnetic removal that had been conducted in the reservoir since 2003. The highest percentage of the RDP form (2%) was found in the Goczałkowice bottom sediments. The order of the specific speciation forms in the bottom sediments of the examined reservoirs was:

Rybnik: AAP > EP > WDP > RDP; 4,630> 3,740 > 117 > 65 > 3.5 mgP/kg

Pławniowice: AAP > EP > WDP > RDP; 916 > 783 > 107 > 15 > 1.4 mgP/kg

Goczałkowice: AAP > WDP > EP > RDP; 686 > 628 > 51 > 7 > 0.14 mgP/kg

The mutual correlations between the phosphorus speciation forms (AAP : EP : WDP : RDP) were as follows:

Rybnik: 1,323 : 1,068 : 33 : 18 : 1;

Pławniowice: 654 : 559 : 76 : 11 : 1;

Goczałkowice: 4,900 : 4,485 : 364 : 50 : 1.

The comparison of the mean concentration values for specific phosphorus forms in the bottom sediments of the three investigated reservoirs demonstrated that the Rybnik sediments had the highest contents of phosphorus. The contents in Pławniowice and Goczałkowice were 5-7 times lower

Go to article

Authors and Affiliations

Maciej Kostecki
Krystyna Janta-Koszuta
Katarzyna Stahl
Bartosz Łozowski
Download PDF Download RIS Download Bibtex

Abstract

The study of groundwaters was carried out in two different forest ecosystems of Słowiński National

Park: Vaccinio uliginosi-Betuletum pubescentis and Empetro nigri-Pinetum in the period of 2002-2005. Differences were found in the position of the groundwater table and in the concentrations of nitrogen and phosphorus

compounds in the investigated forest associations. In the Vaccinio uliginosi-Betuletum pubescentis association

the groundwater table was found on average at a depth of -73.3 cm, while in Empetro nigri-Pinetum at -90.2

cm. No statistically significant effect of precipitation on the position of the groundwater table was found in

this study. Statistical calculations (U Mann-Whitney test) for groundwaters in the analyzed forest associations

showed statistically significant differences in the dynamics of concentrations of total nitrogen (T-N), organic

nitrogen (Norg.), nitrate nitrogen (N-NO3

), total phosphorus (T-P), organic phosphorus (Porg.) and the level of

groundwaters.

Go to article

Authors and Affiliations

A. Parzych
Download PDF Download RIS Download Bibtex

Abstract

This study presents the results of research on the effect of long-term use of phosphorus fertilizers on permanent sugar beet crops for more than 50 years and on the transformation of phosphate forms on light chestnut soil and its yield. Our work aims to establish the main factors of quantitative and qualitative changes in various phosphates in light chestnut soil. Despite the large amount of practical material, the influence duration of phosphorus fertilizer application has not been sufficiently studied on the irrigated soils of Kazakhstan. It should be noted that the current study was carried out in long-term stationary experimental sites for the production of sugar beet with permanent sowing. The introduction of phosphate fertilizers primarily on the permanent crops of sugar beets in the same norms contributes to a more significant increase in gross phosphorus reserves. The soil content of gross phosphorus for 58 years on the control and nitrogen-potassium variants show practically no changes. Furthermore, when phosphorus fertilizers are applied on the variant with the annual application of a single norm of phosphorus and its amount for 58 years (4400 kg∙ha–1 of application doses) its content increased by 2660 mg∙kg–1, and with the introduction of its one and a half norms (6600 kg of application doses) by 2860 mg∙kg–1 of soil.
Go to article

Authors and Affiliations

Balnur Alimbekova
1
ORCID: ORCID
Rakhimzhan Yeleshev
1 2
ORCID: ORCID
Zhenisgul Bakenova
ORCID: ORCID
Aigerim Shibikeyeva
ORCID: ORCID
Marzhan Balkozha
ORCID: ORCID

  1. Kazakh National Agrarian University, Faculty of Agronomy, Abay avenue 8, Almaty 050010, Kazakhstan
  2. National Academy of Sciences of the Republic of Kazakhstan, Almaty, Kazakhstan
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of tests performed on an installation with an aerated microelectrolytic bed (MEL-bed) and sludge sedimentation. The systems were designed in two versions, differing in the aeration method, i.e., a mechanically aerated coagulator (MAC) and an automatically aerated coagulator (AAC). The experiment demonstrated a high (approx. 84%) efficiency of phosphorus removal from a model solution for both versions. The corroding bed was the source of iron in the solution. In the initial phase aeration method affected the phosphorus removal rate, flocculation and sedimentation processes. Physical and chemical changes in the MEL-bed packing were observed.
Go to article

Bibliography

  1. Deng, Y., Englehardt, J.D., Abdul-Aziz, S., Bataille, T., Cueto, J., De Leon, O., Wright, M.E., Gardinali, P., Narayanan, A., Polar, J. & Tomoyuki, S. (2013). Ambient iron-mediated aeration (IMA) for water reuse, Water Research, 47, pp. 850–858, DOI: 10.1016/j.watres.2012.11.005
  2. El Samrani, A.G., Lartiges, B.S., Montarges-Pelletier, E., Kazpard, V., Barres, O. & Ghanbaja, J. (2004).Clarification of municipal sewage with ferric chloride: the nature of coagulant species, Water Research, 38, pp. 756–768, DOI: 10.1016/jwatres.2003.10.002.
  3. Gromiec, M.J. & Gromiec, T.M. (2010). Controlling of eutrophication in aquatic environments, Journal of Water and Land Development, 14, pp. 29–35.
  4. Gu, A.Z., Liu, L., Neethling, J.B., Stensel, H.D. & Murthy, S. (2011). Treatability and fate of various phosphorus fractions in different wastewater treatment processes, Water Science and Technology, 63 (4), pp. 804–810, DOI: 10.2166/wst.2011.215.
  5. Lai, B., Zhou, Y. & Yang, P. (2012). Passivation of sponge iron and GAC in Fe0/GAC mixed-potential corrosion reactor, Industrial & Engineering Chemistry Research, 51(22), pp. 7777–7785, DOI: 10.1021/ie203019t.
  6. Lakshmanan, D., Clifford, D.A. & Samanta, G. (2009). Ferrous and ferric ion generation during iron electrocoagulation, Environmental Science and Technology, 43(10), pp. 3853–3859, DOI: 10.1021/es8036669.
  7. Li, C., Ma, J., Shen, J. & Wang, P. (2009). Removal phosphate from secondary effluent with Fe2+ enhanced by H2O2 at nature pH/neutral pH, Journal of Hazardous Materials, 166, pp. 891–896, DOI: 10.1016/j.jhazmat.2008.11.111.
  8. Libecki, B. (2018) Koagulator do oczyszczania ścieków (Coagulator for wastewater treatment) Patent Application, Polish Patent Office, application No: P.426089
  9. Ma, L. & Zhang, W.-X. (2008). Enhanced biological treatment of industrial wastewater with bimetallic zero-valent iron, Environmental Science and Technology, 42, pp. 5384–5389, DOI: 10.1021/es801743s.
  10. Mak, M.S.H., & Irene, M.C. (2009). Effects of hardness and alkalinity on the removal of arsenic(V) from humic acid-deficient and humic acid-rich groundwater by zero-valent iron, Water Research, 43, pp. 4296–4304, DOI: 10.1016/j.watres.2009.06.022.
  11. Qin, Sh., Li, X., Zhang, T. & Ronga, W. (2011). Pretreatment of chemical cleaning wastewater by microelectrolysis process, Procedia Environmental Sciences, 10, pp. 1154–1158, DOI: 10.1016/j.proenv.2011.09.184.
  12. Sarin, P., Snoeyink, V.L., Lytle, D.A. & Kriven, W.M. (2004). Iron corrosion scales: model for scale growth, iron release, and colored water formation, Journal of Environmental Engineering, 4, pp. 364–373.
  13. Sleiman, N., Deluchat, V., Wazne, M., Mallet, M., Courtin-Nomade, A., Kazpard, V. & Baudu, M. (2016). Phosphate removal from aqueous solution using ZVI/sand bed reactor: Behavior and mechanism, Water Research, 99, pp. 56–65, DOI: 10.1016/j.watres.2016.04.054.
  14. Smoczyński, L., Muńska, K.T., Kosobucka, M. & Pierożyński, B. (2014). Phosphorus and COD removal from chemically coagulated wastewater, Environmental Protection Engineering, 40(3), pp. 63–73.
  15. Sterner, R.W. (2008). On the Phosphorus Limitation Paradigm for Lakes, International Review of Hydrobiology, 93, 4–5, pp. 433–445, DOI: 10.1002/iroh.200811068.
  16. Sun, Y., Li, J., Huang, T. & Guan, X. (2016). The influeces of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: A review, Water Research, 100, pp. 277–295, DOI: 10.1016/j.watres.2016.05.031.
  17. Tarkowska-Kukuryk, M. (2013). Effect of phosphorus loadings on macrophytes structure and trophic state of dam reservoir on a small lowland river (eastern Poland), Archives of Environmental Protection, 39, 3, pp. 33–46, DOI:10.2478/aep-2013-0029.
  18. Wan, W., Pepping, T.J., Banerji, T., Chaudhari, S. & Giammar, D.E. (2011). Effects of water chemistry on arsenic removal from drinking water by electrocoagulation, Water Research, 45(1), pp. 384–392, DOI: 10.1016/j.watres.2010.08.016.
  19. Wei, M.-Ch., Wang, K.-S., Hsiao, T.-E., Lin, I.-Ch., Wu, H.-J., Wu, Y.-L., Liu, P.-H. & Chang, S.-H. (2011). Effects of UV irradiation on humic acid removal by ozonation, Fenton and Fe0/air treatment: THMFP and biotoxicity evaluation, Journal of Hazardous Materials, 195(15) pp. 324–331, DOI: 10.1016/j.jhazmat.2011.08.044.
  20. Yang, X., Xue, Y. & Wang, W. (2009). Mechanism, kinetics and application studies on enhanced activated sludge by interior microelectrolysis, Bioresources Technology, 2009, 100(2), pp. 649–653, DOI: 10.1016/j.biortech.2008.07.035.
  21. Yang, Z., Ma, Y., Liu, Y., Li, Q., Zhou, Z. & Ren, Z. (2017).Degradation of organic pollutants in near-neutral pH solution by Fe-C micro-electrolysis system. Chemical Engineering Journal, 315, pp. 403–414, DOI: 10.1016/j.cej.2017.01.042.
  22. Yanhe, H., Han, L., Meili, L., Yimin, S., Cunzhen, L. & Jiaqing, Ch. (2016). Purification treatment of dyes wastewater with a novel micro-electrolysis reactor, Separation and Purification Technology, 170, pp. 241–247, DOI: 10.1016/j.seppur.2016.06.058.
  23. Yuan, S., Wu, Ch., Wan, J. & Lu, X. (2009). In situ removal of copper from sediments by a galvanic cell, Journal of Environmental Management, 90, 421–427, DOI: 10.1016/j.jenvman.2007.10.009.
  24. Zou, H. & Wang, Y. (2017). Optimization of induced crystallization reaction in a novel process of nutrients removal coupled with phosphorus recovery from domestic wastewater, Archives of Environmental Protection, 43(4), 33–38, DOI: 10.1515/aep-2017-0037.

Go to article

Authors and Affiliations

Bartosz Libecki
1
ORCID: ORCID
Tomasz Mikołajczyk
1
ORCID: ORCID

  1. Department of Chemistry, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

Phosphorus removal and recovery from domestic wastewater is urgent nowadays. A novel process of nutrients removal coupled with phosphorus recovery from domestic sewage was proposed and optimization of induced crystallization reaction was performed in this study. The results showed that 92.3% of phosphorus recovery via induced Hydroxyapatite crystallization was achieved at the optimum process parameters: reaction time of 80 min, seed crystal loads of 60 g/L, pH of 8.5, Ca/P mole ratio of 2.0 and 4.0 L/min aeration rate when the PO43--P concentration was 10 mg/L in the influent, displaying an excellent phosphorus recovery performance. Importantly, it was found that the effect of reaction temperature on induced Hydroxyapatite crystallization was slight, thus favoring practical application of phosphorus recovery method described in this study. From these results, the proposed method of induced HAP crystallization to recover phosphorus combined with nutrients removal can be an economical and effective technology, probably favoring the water pollution control and phosphate rock recycle.

Go to article

Authors and Affiliations

Haiming Zou
Yan Wang
Download PDF Download RIS Download Bibtex

Abstract

The research was conducted in a relatively small (26.8 ha) but quite deep (17.3 m) Lake Długie in Olsztyn, Poland. For over 20 years the lake was collecting sewage which eventually caused its complete degradation. In 1987-2000 the lake was restored using the artificial aeration method with destratification of water. The results showed that the artificial aeration effectively limited the internal loading. Application of this restoration method resulted in reduction of phosphorus compounds concentrations in the analyzed water strata. The decrease of TP in bottom sediments (to the level of 3-4 mg P g·' DW) was probably associated with the fact that a new layer of sediments was created, reflecting a change in the aquatic conditions caused by the restoration. The investigations conducted in the reference years showed that the changes were not permanent. A high concentration of phosphorus compounds in bottom sediments, low sorptivc capacity and a tendency to oxygen deficiency, indicate that further possibility to decrease the amount of phosphorus compounds in the lake by this restoration method is limited.
Go to article

Authors and Affiliations

Renata Brzozowska
Helena Gawrońska
Download PDF Download RIS Download Bibtex

Abstract

Studied was a small (4.6 ha) meromictic lake situated in a deep land hollow surrounded by a highinclination slope. The lake was made shallower two times (from 20 to 18 m) by collapsed shores. It is fed by underground waters and has relatively constant outflow. Limited water dynamics reduced the epilimnion thickness (from 4 to 2 m) and influenced the monimolimnion setting below 13 m depth with a characteristic small (0.2°C) temperature increase in the vertical profile and a permanent deoxygenation of the water below 7-11 m depth. The relationship between the organic matter parameters BOD; and COD-Mn before the shore collapse revealed the dominance of matter produced in the reservoir. In the final period the situation was opposite. In the monimolimnion allochthonous matter accumulated which due to anaerobic decomposition generated large amounts of ammonium. Observed in the same water layer was also a decrease of the conductivity.
Go to article

Authors and Affiliations

Renata Tandyrak
Mariusz Teodorowicz
Joanna Gorchowska
Download PDF Download RIS Download Bibtex

Abstract

An attempt was made to determine the correlation between the granulometric structure of bottom sediments and the content of speciation forms of phosphorus and selected metals. Using the sedimentation method, the bottom sediments of a thermally contaminated dam reservoir were divided into fast and slow-draining fractions. Measurements of granulometric composition were made, determining the volume proportions of sediment particles in the range of 0.1 m to 650 m. Particle share sizes were determined in the size range: 0.1–50 m (F1), 50–100 m (F2), 100–200 m (F3), 200–400 m. (F4). The study showed that the content of speciation forms of phosphorus and selected metals remains related to the granulometric structure of bottom sediments. The content of organic matter in sediments is determined by the proportion of the smallest particles, from 0.1 to 50 μm, at the same time these particles most strongly aff ect the reduction conditions of sediments. According to Gilford›s correlation thresholds, there was no correlation between the proportion of sediment particles with dimensions of 0.1–50 μm and the concentration of speciation forms of phosphorus. For particles with dimensions of 50–100 μm, the strongest correlation was observed for the concentration of the EP fraction and for the WDP fraction (r2 = 0.4048, r2 = 0.3636). A strong correlation between the size of sediment particles and the concentration of speciated forms of phosphorus was noted for particles with dimensions of 100–200 μm and 200–400 μm. The coeffi cient of determination was for AAP, EP, WDP and RDP, respectively: 0.8292, 0.891, 0.7934, 0.47. The relationship between particles in the 0.1–50 m range and iron (Fe) concentration, R2 – 0.3792, aluminum (Al) R– 0.3208, and zinc (Zn) R2 – 0.4608, was classifi ed as medium. For particles in the 50–100 m range, a medium correlation with calcium (Ca) and magnesium (Mg) concentrations is apparent, R2 0.4443 and 0.3818, respectively. For particles 100–200 mm and 200–400 mm, an almost full correlation is noted for iron (Fe) R2 – 0.9835, aluminum (Al) R2 – 0.9878, calcium (Ca) R2 – 0. 824, very strong for manganese (Mn) R2 – 0.6817, and zinc (Zn) R2 – 0.7343. There is a very strong correlation between the concentration of the AAP fraction with the concentration of iron (Fe) R2 – 0.8694 and a strong correlation between the concentration of EP with the concentration of iron (Fe) R2 – 0.609. There is a strong correlation between the concentration of the AAP and EP fractions with the concentration of aluminum (Al) R2 – 0. 6253 and 0.8327. The concentration of AAP and EP fractions with the concentration of calcium (Ca) R2 – 0.5941 and 0.7576 remains in a strong relationship. The correlation between the concentration of RDP fractions and the concentration of magnesium (Mg) and manganese (Mn) remains in a medium relationship. The concentration of the EP fraction (Olsen-P) is in a strong relationship with the concentration of organic matter (R2 –.0.6763). No correlation was found between the concentration of the residuum form and the concentrations of organic matter, iron (Fe) and aluminum (Al). A medium correlation was found between the concentration of the residuum form and the concentration of calcium (Ca), magnesium (Mg), manganese (Mn) – R2 = 0.4206 and zinc (Zn).
Go to article

Bibliography

  1. Adiyiah, J., Acheampong, M. A., Ansa, E. D. O. & Kelderman P. (2014). Grainsize analysis and metals distribution in sediment fractions of Lake Markermeer in The Netherlands. Int J Environ Sci Toxicol Res 2(8):160–167.
  2. Aimin Zhou, Hongxiao Tang, Dongsheng Wang, (2005). Phosphorus adsorption on natural sediments: Modelling and effect of pH and sediment composition, Water Research, 38, 1245 – 1254.
  3. Aleksander-Kwaterczak, U., Sikora, W.S. & Wójcik, R. (2004), Heavy metals concent distribution in grain-size fractions of the Odra River sediments, Geologia, 30, 2, 165-174.
  4. Anishchenko, O. V.,. Glushchenko, L. A., Dubowskaya, O. P., Zuev, I.V., Ageev, A.V. & Ivanov, E.A. (2015). Morphometry and metal concentrations in water and bottom sediments of mountain lakes in Ergaki Natural Park, Western Sayan Mountains, Water Resources, vo. 42, Issue 5, 670-682.
  5. Augustyniak, R., Grochowska, J.K., Łopata, M., Parszuto, K., Tandyrak, R. & Tunowski, J. (2019). Sorption properties of the bottom sediment of a lake restored by phosphorus inactivation method, 15 years after the termination of the lake restoration procedure. Water, 11, 10, 1-20. DOI: 10.3390/w11102175.
  6. Aydin Isil, F., Aydin, A., Saydut, C. & Hamamci. (2009). A sequential extraction to determine the distribution of phosphorus in the seawater and marine surface sediment, Journal of Hazardous Materials, 168, 664-669.
  7. Brogowski Z.& Kwasowski W. (2015). An attempt of using soil grain size in calculating the capacity of water unavailable to plants. Soil Science Annual, vol. 66(1), 21 – 28.
  8. Canavan, R.W., Van Capellen, P., Zwolskan, J.J.G., van der Berg, G.A. & Slomp, C.P. (2007). Geochemistry of trace metals in a fresh water sediments; field results and diagenetic modelling. Science of Total Environment 381, 263-279.
  9. Clark, M.W. (1923). Studies on Oxidation-Reduction. London.
  10. Dunalska, J.A. (2019). Lake restoration - theory and practice, Monograph of the Committee on Environmental Engineering of the Polish Academy of Sciences. Monografia Komitetu Inzynierii Środowiska PAN, Nr 148 (in Polish)
  11. Frankowski M., Sobczyński, T. & Ziola-Frankowska, A. (2005). The effect of Grain Size Structure on the Kontent of Heavy Metals in Alluvial Sediments of the Odra River, Polish Journal of Environmental Studies 14, 81-86.
  12. Fuentes-Hernández, M. V. (2000) Nitrógeno, fósforo y cociente CIN en los sedimentos superficiales de la laguna de Chacopata, Sucre, Venesuela, Rev. Biol. Trop. 48 Sup. 1: 261-268.
  13. Gierszewski, P. (2018). Hydromorphological conditions of the functioning of the geoecosystem of the Włocławski reservoir, Wyd. Instytut Geografii i Przestrzennego Zagospodarowania PAN, Prace Geograficzne Nr 268, Warszawa 2018.(in polish).
  14. Gierszewski P. (2008). The concentration of heavy metals in the sediments of the Włocławek reservoir as an indicator of the hydrodynamic conditions of deposition, Landform Analysis, Vol. 9: 79–82. (in polish).
  15. Grochowska, J. (2016). Surface runoff of calcium, magnesium, iron, manganese, nitrogen and phosphorus from the Upper Pasłęka catchment, Woda – Środowisko – Obszary Wiejskie, (X-XII), T. 16, Z. 4 (56). 1642-8145s. 33–42. (in polish).
  16. Grochowska, J., Tandyrak, R., Dunalska, J. & Górniak, D. (2004). Drainage basin impact on the hydrochemical conditions in small water reservoirs of the ekstern peripheries of Olsztyn, Limnological Review 4, 95-100.
  17. Guilford J.P. (1978). The nature of human intelligence, , tłum. B. Czerniawska, W. Kozłowski, J.Radzicki, PWN, Warszawa (in polish)
  18. Jancewicz, A., Dmitruk, U., Sośnicki, Ł., Tomczuk, U. & Bartczak, A. (2012). The impact of the catchment development on the quality of bottom sediments in selected dam reservoirs. Ochrona Środowiska, Vol 34, 4. (in polish).
  19. Kostecki, M. (2022), Hydrochemical and hydrobiological studies of the Rybnik dam reservoir in terms of the current state of the quality of water resources and monitoring the phenomena occurring in it, 2002-2022 (unpublished work, in Polish).
  20. Kostecki, M. (2021). A new antrhropogenic lake Kuźnica Warężyńska - thermal and oxygen conditions after 14 years of exploitation in terms of protection and restoration. Archives of Environmental Protection 47, 115-127, DOI:10.24425/aep.2021.13728383.
  21. .Kostecki, M. (2014). Restoration anthropogenic lake Pławniowice by hypolimnetic withdrawal metod – limnological study, Works&Studies IPIŚ PAN Zabrze, no 84, (in polish).
  22. Kostecki, M. (2003). Allocation and transformations of selected pollutants in the dam reservoirs of the Kłodnica river node and the Gliwice Canal, Works & Studies IPIŚPAN Zabrze, no 57.
  23. Koś, K. & Zawisza, E. (2015). Geotechnical characteristics of bottom sediments of the Rzeszów Reservoir. Journal of Civil Engineering, Environmenta and Architecture JCEEA, t. XXXII, 62 (3/II/15), 195-208. (in polish).
  24. Lamorski K., Bieganowski, A., Ryżak, M., Sochan, A., Sławiński, C. & Stelmach W. (2014). Assessmentof the usefulness of particle size distribution measured by laser diffraction for soil water retentionmodelling. Journal of Plant Nutrition and Soil Sience, 177(5), 803 – 8013.
  25. Ligęza, S. & Smal, H. (2003). Particle size distribution of bottom sediments from the discharge water reservoir of Zakłady Azotowe Puławy. Acta Agrophysica 87(1(2)):271-277. (in polish).
  26. Ligęza, S. & Smal, H. (2002). Differentiation of pH and granulometric composition of bottom sediments of the Zemborzycki Reservoir. Acta Agrophysica 70, 235-245. (in polish).
  27. Machowski, R., Rzetala, M.A., Rzętala, M. & Solarski, M. (2019). Anthropogenic enrichment of the chemical composition of bottom sediments of water bodies in the neighborhood of a non-ferrous metal smelter (Silesian Upland, Southern Poland), Scientific Reports, 9, 14445.
  28. Mander, D. & Jarvet, A. (1998). Buffering role of smal! reservoirs in agricultural catchments. Internat. Rev. Hydrobiol., 83 (spec. iss.), 639-646.
  29. Мартынов, A. B. (2018). Редкоземельные элементы в аллювиальных почвах поймы р. Амур: влияние катастрофического паводка 2013 г. Вестник СПбГУ. Науки о Земле. Т. 63. Вып. 2
  30. Matijevic, S., Bilic, J., Ribicic, D. & Dunatow, J. (2012). Distribution of phosphorus species in below-cage sediments at the tuna farms in the middle Adriatic Sea (Croatia), ACTA ADRIAT.,53(3): 399 – 412. ISSN: 0001-5113 AADRAY
  31. Matijewic, S., Kujakowic-Gaspic, Z., Bogner, D., Gugic, A. & Martinowic, I. (2008). Vertical distribution of phosphorus species and iron in sediment at open sea stations in the middle Adriatic region. ACTA ADRIAT., 49(2): 165 – 184. ISSN: 0001-5113 AADRAY.
  32. Matijevic, S., Bogner, D., Morovic, M., Ticina, V. & Grec., B., (2008). Characteristics of the sediment along the Eastern Adriatic coast (Croatia). Fresenius Environmental Bulletin, 17, 10B, SI, 1793-1772.
  33. Mazierski, J. & Kostecki M. (2021). Impact of the heated water discharge on the water quality in a shallow lowland dam reservoir. Archives of Environmental Protection, 47, 2, 29-47. DOI: 10.24425/aep.2021.137276.
  34. Moses, L., Sheela A., Janaki, L., Sabu, J. (2011). Influence of lake morphology on water quality, Environmentasl Monitoring and Assessment, Volume: 182, Issue: ‏ 1-4, Pages: 443-454, (2011).
  35. Pohl, A., Tytła, M., Kernert, J. & Bodzek, M. (2022). Plastics-derived and heavy metals contaminants in the granulometric fractions of bottom sediments of anthropogenic water reservoir – Comprehensive analysis. Odsalanie i uzdatnianie wody, 258, 207–222. Doi:10.5004/dwt.2022.28459
  36. Qixing Zhou, Gibson, Ch.E. & Yinmei Zhu, (2001). Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK, Chemosphere. 42, 221 – 225.
  37. Rząsa, S. & Owczarzak, W. (2013). Methods for the granulometric analysis of soil for science and practice. Polish J. Soil Sci., 46(1), 1-50.
  38. Rzętała, M. (2008). Functioning of water reservoirs and the course of limnic processes under conditions of varied anthropopresion a case study of Upper Silesian Region, Wyd. Prace Naukowe Uniwersytetu Śląskiego, Nr 2643, Katowice 2008.(in Polish).
  39. Sedlácek, J., Bábek, O. & Nováková, T. (2017). Sedimentary record and anthropogenic pollution of a complex, multiplesource fed dam reservoirs: An example from the Nové Mlýny reservoir, Czech Republic. Sci. Total Environ. 574, 1456–1471.
  40. Sojka, M., Siepak, M. & Gnojska, E. (2013). Assessment of heavy metals content in bottom sediments of the initial part of the Old Town reservoir on the Poviat river. Annual Set The Environment Protection, Rocznik Ochrona Środowiska, Volume/Tom 15. ISSN 1506-218X 1916–1928. (in polish).
  41. Stocker, R. & Imberger, J. (2003). Horizontal transport and dispersion in the surface layer of a medium‐sized lake. Limnol. Oceanogr. 48(3), 971-982. Doi:10.4319/lo.2003.48.3.0971.
  42. Suresh, G., Sutharsan, P., Ramasamy, V. & Venkatachalapathy, R. (2012). Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments, India. Ecotoxicol. Environ. Saf. 84, 117–124.
  43. Tarnawski, M., Baran, A. & Jasiewicz, C. (2012). Assessment of physico-chemical properties of the bottom sediments of Hańcza reservoir. Proceedings of ECOpole DOI:10.2429/proc.2012.6(1)042 2012;6(1). (in polish)
  44. The Polish standard 2008. The Solis and mineral materiale – Sampling and grainsize analysis.
  45. Tuszyńska, A. & Kołecka, K. (2011). Influence of the particle size distribution of pollutants on the quality of water and sewage treated in ecological systems. Gaz, Wwoda i Technika Sanitarna, 12, 486-490 (in polish).
  46. Wojtkowska, M. & Matula, M. (2016) Analysis of heavy metals in selected granulometric fractions of bottom sediments of the Utrata River, Annual Set The Environment Protection, Rocznik Ochrona Środowiska, 18, ISSN 1506-218X 667-680. (in polish).
  47. Wojtkowska, M., Niesiobędzka, K. & Krajewska, E. (2005). Heavy metals in water and bottom sediments of the Czerniakowskie Lake. [In:] The cycle of elements in nature. B. Gworek (Ed). Warszawa: Wydaw. IOŚ s. 194–197, (in polish).
Go to article

Authors and Affiliations

Maciej Kostecki
1
ORCID: ORCID

  1. Institute of Environmental Engineering, PAS, Zabrze, Poland
Download PDF Download RIS Download Bibtex

Abstract

Phosphogypsum (PG) – a waste material generated in enormous amounts, accumulates a wide range of pollutants and thus represents a major environmental problem. Among the proposed potential strategies for PG management, none has been implemented on a large scale up to date. At the same time, the rapid depletion of phosphorite resources, used to manufacture most commercial phosphorus (P) fertilizers, poses unprecedented challenges for future agriculture and environmental protection. The aim of this study was to assess the possibility of using PG as a source of P for fertilizing plants. The effect of PG fertilization on the dry mass accumulation, P and sulphur (S) contents in soil and in the above-ground parts of plants, as well as on the level of heavy metal contaminations, were studied in the experimental model consisted of 12 genotypes of three lupine species – Lupinus angustifolius, Lupinus albus and Lupinus luteus. The PG application increased the content of both the available and active P in the soil. The increased P bioavailability resulted in an elevated uptake and intracellular content of this nutrient in the studied plant species in a dose- and variety-dependent manner. The heavy metals present in the waste did not affect their accumulation in the plants. The results indicate the possibility of using P forms present in PG as an alternative source of this component in plant nutrition, at the same time allowing elimination of the waste deposited on huge areas, which will certainly contribute to improving the quality of the environment.
Go to article

Bibliography

  1. Abdolzadeh, A., Wang, X., Veneklaas, E.J & Lambers, H. (2010). Effects of phosphorus supply on growth, phosphate concentration and cluster-root formation in three Lupinus species. Annals of Botany, 105, pp. 365–374. DOI:10.1093/aob/mcp297
  2. Abraham, E. M., Ganopoulos, I., Madesis, P., Mavromatis, A., Mylona, P., Nianiou-Obeidat, I., Parissi, Z., Polidoros, A., Tani, E. & Vlachostergios D. (2019). The Use of Lupin as a Source of Protein in Animal Feeding: Genomic Tools and Breeding Approaches. Int. J. Mol. Sci., 20, 851, pp. 1-27. DOI:10.3390/ijms20040851
  3. Al- Karaki, G.N. & Al-Omoush, M. (2002). Wheat response to phosphogypsum and mycorrhizal fungi in alkaline soil. J. Plant Nutr, 25(4), pp. 873–883. DOI:10.1081/PLN-120002966
  4. Al-Hwaiti M. & Al-Khashman O. (2015). Health risk assessment of heavy metals contamination in tomato and green pepper plants grown in soils amended with phosphogypsum waste materials. Environ Geochem Health, 37, pp. 287–304. DOI:10.1007/s10653-014-9646-z
  5. Ammar, R., El Samrani, A.G., Kazpard, V., Bassil, J., Lartiges, B., Saad, Z. & Chou L. (2013) Applying physicochemical approaches to control phosphogypsum heavy metal releases in aquatic environment. Environ Sci Pollut Res, 20, pp. 9014–9025. DOI:10.1007/s11356-013-1875-7.
  6. Aslam, M.M., Karanja, J.K., Yuan, W., Zhang, Q., Zhang, J. & Xu, W. (2021). Phosphorus uptake is associated with the rhizosheath formation of mature cluster roots in white lupin under soil drying and phosphorus deficiency. Plant Physiology and Biochemistry, 166, pp. 531–539. DOI:10.1016/j.plaphy.2021.06.022
  7. Bielecki, K. & Kulczycki G. (2012). Modyfikacja metody Buttersa i Chenery'ego oznaczania siarki ogólnej w roślinach i glebie, Przem. Chem., 91/5, pp. 688-691. (in Polish)
  8. Blum, S.C., Caires, E.F. & Alleoni, L.R.F. (2013). Lime and phosphogypsum application and sulfate retention in subtropical soils under no-till system, J. Soil Sci. Plant Nutr., 13(2), pp. 279-300. DOI:10.4067/S0718-95162013005000024
  9. Blum, S.C., Garbuio, F.J., Joris, H.A.W. & Caires E.F. (2014). Assessing available soil sulphur fromphosphogypsum applications in a no-till cropping system. Experimental Agriculture, 50(04), pp. 516-532. DOI:10.1017/S0014479714000015
  10. Bolland, M.D.A. (1997). Comparative phosphorus requirement of four lupin species. J Plant Nutr, 20, pp. 1239–1253. DOI:10.1080/01904169709365332
  11. Bouray, M., Moir, J., Condron, L. & Lehto N. (2020). Impacts of Phosphogypsum, Soluble Fertilizer and Lime Amendment of Acid Soils on the Bioavailability of Phosphorus and Sulphur under Lucerne (Medicago sativa). Plants, 9(7), pp. 883. DOI:10.3390/plants9070883
  12. Brennan, R.F. & Bolland, M.D.A. (2003) Lupinus luteus cv. Wodjil takes up more phosphorus and cadmium than Lupinus angustifolius cv. Kalya. Plant and Soil, 248, pp. 167–185.
  13. Caires, E.F., Kusman, M.T., Barth, G., Garbuio, F.J. & Padilha, J.M. (2004). Changes in soil chemical properties and corn response to lime and gypsum applications. Revista Brasileira de Ciência do Solo, 28, pp.125–136.
  14. Campbell, C.G., Garrido, F., Illera, V. & García-González, M.T. (2006). Transport of Cd, Cu and Pb in an acid soil amended with phosphogypsum, sugar foam and phosphoric rock. Applied Geochemistry, 21, pp. 1030–1043. DOI:10.1016/j.apgeochem.2006.02.023
  15. Carmeis Filho, A.C.A., Crusciol, C.A.C., Guimarães, T.M., Calonego, J.C. & Mooney, S.J. (2016). Impact of Amendments on the Physical Properties of Soil under Tropical Long-Term No Till Conditions. PLOS One, 11(12), pp. 1-21. DOI:10.1371/journal.pone.0167564
  16. Chabchoubi, I.B., Bouguerra, S., Ksibi, M. & Hentati O. (2021) Health risk assessment of heavy metals exposure via consumption of crops grown in phosphogypsum contaminated soils. Environ Geochem Health, 43, pp. 1953–1981. DOI:10.1007/s10653-020-00777-y
  17. Chen, Y.L., Dunbabin, V.M., Diggle, A.J., Siddique, K.H.M & Rengel, Z. (2013). Phosphorus starvation boosts carboxylate secretion in P-deficient genotypes of Lupinus angustifolius with contrasting root structure. Crop & Pasture Science, 64, pp. 588–599. DOI:10.1071/CP13012
  18. Cheng, L., Tang, X., Vance, C.P., White, P.J., Zhang, F. & Shen, J. (2014). Interactions between light intensity and phosphorus nutrition affect the phosphate-mining capacity of white lupin (Lupinus albus L.). J Exp Bot, 65 (12), pp. 2995–3003. DOI:10.1093/jxb/eru135
  19. Chernysh, Y., Yakhnenko, O., Chubur, V. & Roubik, H. (2021). Phosphogypsum Recycling: A Review of Environmental Issues, Current Trends, and Prospects. Appl. Sci., 11, 1575. DOI:10.3390/app11041575
  20. Chuan, L.M., Zheng, H.G., Zhao, J.J., Wang, A.L. & Sun, S.F. (2017). Policies, standards and managements associated with PG utilization. IOP Conf. Ser. Earth Environ. Sci., 81,pp. 1-4.
  21. Cordell, D., & White, S. (2013) Sustainable Phosphorus Measures: Strategies and Technologies for Achieving Phosphorus Security. Agronomy 3, pp. 86-116. DOI:10.3390/agronomy3010086
  22. Crusciol, C.A.C., Artigiani, A.C.C.A., Arf, O., Carmeis Filho, A.C.A., Soratto, R.P., Nascente, A.S. & Alvarez, R.C.F. (2016). Soil fertility, plant nutrition, and grain yield of upland rice affected by surface application of lime, silicate, and phosphogypsum in a tropical no-till system. Catena, 137, pp. 87–99. DOI:10.1016/j.catena.2015.09.009
  23. Delgado, A., Uceda, I., Andreu, L., Kassem, S. & Del Campbillo, C. (2002) Fertilizer Phosphorus Recovery from Gypsum-Amended, Reclaimed Calcareous Marsh Soils. Reclaimed Calcareous Marsh Soils, Arid Land Research and Management, 16:4, pp. 319-334. DOI:10.1080/15324980290000421
  24. Dhillon, J., Torres, G., Driver, E., Figueiredo, B. & Raun, W. (2017) World Phosphorus Use Efficiency in Cereal Crops. Agronomy Journal, vol. 109, issue 4, pp. 1670-1677. DOI:10.2134/agronj2016.08.0483
  25. Ding, W., Cong, W. & Lambers, H. (2021). Plant phosphorus-acquisition and –use strategies affect soil carbon cycling. Trends in Ecology & Evolution, vol. 36, no. 10, pp. 899-906. DOI:10.1016/j.tree.2021.06.005
  26. Dissanayaka, D.M.S.B., Wickramasinghe, W.M.K.R., Marambe B. & Wasaki J. (2017). Phosphorus-mobilization strategy based on carboxylate exudation in lupins (lupinus, Fabaceae): a mechanism facilitating the growth and phosphorus acquisition of neighbouring plants under phosphorus-limited conditions. Experimental Agriculture, 53(2), pp. 308-319. DOI:10.1017/S0014479716000351
  27. Egle, K., Römer, W. & Keller, H. (2003). Exudation of low molecular weight organic acids by Lupinus albus L., Lupinus angustifolius L. and Lupinus luteus L. as affected by phosphorus supply. Agronomie, 23, pp. 511–518. DOI:10.1051/agro:2003025
  28. Ekholm, P., Jaakkola, E., Kiirikki, M., Lahti, K., Lehtoranta, J., Mäkelä, V., Näykki, T., Pietola, L., Tattari, S., Valkama, P., Vesikko, L. & Väisänen S. (2011). The effect of gypsum on phosphorus losses at the catchment scale. The Finnish Environment 33, Finnish Environment Institute, Helsinki.
  29. Elloumi, N., Zouari, M., Chaari, L., Abdallah, F.B., Woodward, S. & Kallel, M. (2015). Effect of phosphogypsum on growth, physiology, and the antioxidative defense system in sunflower seedlings. Environ Sci Pollut Res, 22, pp. 14829–14840. DOI: 10.1007/s11356-015-4716-z
  30. Elrashidi, M.A., West, L.A., Seybold, C.A., Benham, E.C., Schoeneberger, P.J. & Ferguson, R. (2010). Effects of Gypsum Addition on Solubility of Nutrients in Soil Amended With Peat. Soil Science, v. 175, n. 4, pp. 162-172. DOI:10.1097/SS.0b013e3181dd51d0
  31. Elser, J.J. & Bennett, E.M. (2011). A broken biogeochemical cycle. Nature, 478, pp. 29–31. DOI:10.1038/478029a
  32. Enamorado, S., Abril, J.M., Mas, J.L., Periáñez, R., Polvillo, O., Delgado, A. & Quintero, J.M. (2009). Transfer of Cd, Pb, Ra and U from Phosphogypsum Amended Soils to Tomato Plants. Water Air Soil Pollut, 203,pp. 65–77. DOI:10.1007/s11270-009-9992-0
  33. Fotyma, M., Fotyma, E., Gosek, S., Iłowiecka, E., Pietrasz-Kęsik, G., Kęsik, K., Ostrokólski, I., Szewczyk, M., Wilkos, G. & Faber, A. (1991) Szybkie metody określania potrzeb nawozowych roślin oraz zagrożenia środowiska w wyniku nawożenia, Instrukcja wdrożeniowa 34/91, Puławy. (in Polish)
  34. Funayama-Noguchi, S., Noguchi, K. & Terashima, I. (2015). Comparison of the response to phosphorus deficiency in two lupin species, Lupinus albus and L. angustifolius, with contrasting root morphology. Plant, Cell and Environment, 38, pp. 399–410.
  35. Grabas, K., Pawełczyk, A., Stręk W., Szełęg, E. & Stręk S. (2018). Study on the Properties of Waste Apatite Phosphogypsum as a Raw Material of Prospective Applications. Waste and Biomass Valorization, 10, pp. 3143–3155. DOI:10.1007/s12649-018-0316-8
  36. Gresta, F., Wink, M., Prins, U. Abberton, M., Capraro, J., Scarafoni, A. & Hill, G. (2017). Lupins in European cropping systems, in: Legumes in cropping systems, Murphy-Bokern, D., Stoddard, F., & Watson, C. (Eds.), Wallingford: CABI Publishing, pp. 88-108. DOI:10.1079/9781780644981.0088
  37. Hentati, O., Nelson, A., Caetano, A. L., Bouguerra, S., Gonçalves, F., Römbke, J. & Pereira, R. (2015). Phosphogypsum as a soil fertilizer: Ecotoxicity of amended soil and elutriates to bacteria, invertebrates, algae and plants. Journal of Hazardous Materials, 294, pp. 80–89. DOI:10.1016/j.jhazmat.2015.03.034
  38. Hilton, J. (2006). Phosphogypsum – management and opportunities for use, in: The International Fertiliser Society Cambridge, Proceedings 587, London.
  39. Kabata-Pendias, A., Pendias, H. (2001). Trace elements in soils and plants, Third edition, CRC Press LLC, 408 p.
  40. Kassir, L.N., Darwish, T., Shaban, A., Lartiges, B. & Ouiani, N. (2012). Mobility of selected trace elements in Mediterranean red soil amended with phosphogypsum: experimental study. Environ Monit Assess, 184, pp. 4397–4412. DOI:10.1007/s10661-011-2272-7
  41. Lambers, H., Clements, J.C. & Nelson, M.N. (2013). How a phosphorus-acquisition strategy based on Carboxylate exudation powers the success and Agronomic potential of lupines (Lupinus, Fabaceae). Am. J. Bot., 100(2), pp. 263–288. DOI:10.3732/ajb.1200474
  42. Lambers, H. & Plaxton, W.C. (2015). Phosphorus: Back to the Roots, in: Phosphorus Metabolism in Plants, Annual Plant Reviews, vol. 48, Plaxton W. C., Lambers H. (Eds.). JohnWiley & Sons, pp. 3-24. DOI: 10.1002/9781118958841.ch1
  43. Manzoor, H., Bukhat, S., Rasul, S., Rehmani, M.I.A., Noreen, S., Athar, H.R. , Zafar, Z.U., Skalicky, M., Soufan, W., Brestic, M., Habib-ur-Rahman, M., Ogbaga, C.C. & Sabagh, A. (2022). Methyl Jasmonate Alleviated the Adverse Effects of Cadmium Stress in Pea (Pisum sativum L.): A Nexus of Photosystem II Activity and Dynamics of Redox Balance. Front. Plant Sci. 13, 860664. DOI:10.3389/fpls.2022.860664
  44. Monei, N., Hitch, M., Heim, J., Pourret, O.,Heilmeier, H. & Wiche O. (2022) Effect of substrate properties and phosphorus supply on facilitating the uptake of rare earth elements (REE) in mixed culture cropping systems of Hordeum vulgare, Lupinus albus and Lupinus angustifolius. Environmental Science and Pollution Research, 29, pp. 57172–57189. DOI:10.1007/s11356-022-19775-x
  45. Nayak, S., Mishra, C.S.K., Guru, B. & Rath, M. (2011). Effect of phosphogypsum amendment on soil physico-chemical properties, microbial load and enzyme activities. J. Environ. Biol., 32, pp. 613-617.
  46. Ochmian, I., Kozos, K., Jaroszewska, A. & Malinowski, R. (2021). Chemical and Enzymatic Changes of Different Soils during Their Acidification to Adapt Them to the Cultivation of Highbush Blueberry. Agronomy, vol.11(1), 44. DOI: 10.3390/agronomy11010044
  47. Ogbaga, C.C., Athar, H.-u.-R., Amir, M., Bano, H., Chater, C.C.C. & Jellason, N.P. (2020). Clarity on frequently asked questions about drought measurements in plant physiology. Scientific African, 8, e00405. DOI:10.1111/ppl.13327
  48. Ouyang, X., Ma, Zhang, R., Li, P., Gao, M., Sun, C., Weng, L., Chen, Y., Yan, S. & Li, Y. (2022). Uptake of atmospherically deposited cadmium by leaves of vegetables: Subcellular localization by NanoSIMS and potential risks. Journal of Hazardous Materials, 431: 128624. DOI:10.1016/j.jhazmat.2022.128624
  49. Pearse, S.J., Veneklaas, E.J., Cawthray, G.R., Bolland, M.D.A & Lambers, H. (2006). Carboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus status. Plant Soil, 288, pp. 127–139. DOI:10.1007/s11104-006-9099-y
  50. Piszcz U. (2013). Ocena przydatności testów do opisu stanu fosforowego gleb uprawnych, Monografie CLXVI, Wyd. UP we Wrocławiu, Wrocław. (in Polish)
  51. Pliaka, M. & Gaidajis, G. (2022) Potential uses of phosphogypsum: A review. J. Environ. Sci. Health, Part A, 57:9, pp. 746-763, DOI:10.1080/10934529.2022.2105632
  52. PN-R-04023. (1996). Chemical and agricultural analysis-determination of the content available phosphorus in mineral soil. Warszawa: Polish Standards Committee.
  53. Quintero, J.M., Enamorado, S., Mas, J.L., Abril J.M., Polvillo, O. & Delgado, A. (2014). Phosphogypsum amendments and irrigation with acidulated water affect tomato nutrition in reclaimed marsh soils from SW Spain. Span J Agric Res, 12(3), pp. 809-819. DOI:10.5424/sjar/2014123-5273
  54. Rajković, M.B., Blagojević, S.D., Jakovljević, M.D. & Todorović, M.M. (2000). The Application of Atomic Absorption Spectrophotometry (AAS) for Determining the Content of Heavy Metals in Phosphogypsum. Journal of Agricultural Sciences, vol. 45, no 2, pp. 155-164.
  55. Roberts, T.L. & Johnston, A.E. (2015). Phosphorus use efficiency and management in agriculture. Resour Conserv Recycl, vol. 105, pp. 275-281. DOI: 10.1016/j.resconrec.2015.09.013
  56. Römer, W., Dong-Kyu, K., Egle, K., Gerke, J. & Keller, H. (2000). The acquisition of cadmium by Lupinus albus L., Lupinus angustifolius L. and Lolium multiflorum. Lam. J. Plant Nutr. Soil Sci., 163, pp. 623–628. DOI:10.1002/1522-2624(200012)163:6<623::AID-JPLN623>3.3.CO;2-3
  57. Rothwell, S.A., Doody, D.G., Johnston, C., Forber K.J., Cencic O., Rechberger, H. & Withers, P.J.A (2020) Phosphorus stocks and flows in an intensive livestock dominated food system. Resources, Conservation and Recycling, vol. 163,105065. DOI:10.1016/j.resconrec.2020.105065
  58. Saadaoui, E., Ghazel, N., Ben Romdhane, C. & Massoudi, N. (2017). Phosphogypsum: Potential uses and problems – A review. Int. J. Environ. Stud., 74, pp. 558–567. DOI:10.1080/00207233.2017.1330582
  59. Shahid, S.A. & Rehman, K. (2011). Soil salinity development, classification, assessment and management in irrigated agriculture, in: Handbook of plant and crop stress Passarakli M. (Eds.), CRC Press/Taylor & Francis Group, Boca Raton, pp. 23–39.
  60. Smaling, E., Toure, M., Ridder, N.D., Sanginga, N. & Breman, H. (2006). Fertilizer Use and the Environment in Africa: Friends or Foes? Background Paper Prepared for the African Fertilizer Summit, Abuja, Nigeria.
  61. Smaoui-Jardak, M., Kriaa, W., Maalej, M., Zouari, M., Kamoun, L., Trabelsi, W., Abdallah, F.B. & Elloumi, N. (2017). Effect of the phosphogypsum amendment of saline and agricultural soils on growth, productivity and antioxidant enzyme activities of tomato (Solanum lycopersicum L.). Ecotoxicology, 26, pp. 1089-1104. DOI:10.1007/s10646-017-1836-x
  62. Syers, J.K., Johnston, A.E. & Curtin, D. (2008). Efficiency of soil and fertilizer phosphorus use. FAO Fertilizer and Plant Nutrition Bulletin, FAO. Rome.
  63. Takasu, E., Yamada, F., Shimada, N., Kumagai, N., Hirabayashi, T. & Saigusa, M. (2006). Effect of phosphogypsum application on the chemical properties of Andosols, and the growth and Ca uptake of melon seedlings. Soil Science and Plant Nutrition, 52, pp. 760–768. DOI:10.1111/j.1747-0765.2006.00093.x
  64. Tian, D., Xia, J., Zhou, N., Xu, M., Li, X., Zhang, L., Du S. & Gao H. (2022) The Utilization of Phosphogypsum as a Sustainable Phosphate-Based Fertilizer by Aspergillus niger. Agronomy, 12, 646. DOI:10.3390/agronomy12030646
  65. Trejo, N., Matus, I., Del Pozo, A., Walter, I. & Hirzel, J. (2016). Cadmium phytoextraction capacity of white lupine (Lupinus albus L.) and narrow-leafed lupine (Lupinus angustifolius L.) in Tyree contrasting agroclimatic conditions of Chile. Chilean Journal of Agricultural Research, 76(2), pp. 228-235.
  66. Verheijen, F.G.A, Zhuravel, A., Silva, F.C., Amaro, A., Ben-Hur, M. & Keizer, J.J. (2019). The influence of biochar particle size and concentration on bulk density and maximum water holding capacity of sandy vs sandy loam soil in a column experiment. Geoderma, vol. 347, pp. 194-202. DOI:10.1016/j.geoderma.2019.03.044
  67. Vyshpolsky, F., Bekbaev, U., Mukhamedjanov, Kh., Ibatullin, S., Paroda, R., Yuldashev, T., Karimov, A., Aw-Hassan, A., Noble, A. & Qadir, M. (2008). Enhancing the Productivity of High-Magnesium Soil and Water Resources. LDD, vol. 19, issue 1, pp. 45-56. DOI:10.1002/ldr.814
  68. Watanabe, F.S. & Olsen, S.R. (1965). Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. Am. Proc., 29 (6), pp. 677–678.
  69. Xu, W., Zhang, Q., Yuan, W., Xu, F., Aslam, M.M., Miao, R., Li, Y., Wang, Q., Li, X., Zhang, X., Xia, T. & Cheng F. (2020) The genome evolution and low-phosphorus adaptation in white lupin. Nature Communications, vol. 11, 1069. DOI:10.1038/s41467-020-14891-z
  70. Yakovlev, A.S., Kaniskin, M.A. & Terekhova, V.A. (2013). Ecological Evaluation of Artificial Soils Treated with Phosphogypsum. Eurasian Soil Science, vol. 46, no. 6, pp. 697–703. DOI:10.1134/S1064229313060124
  71. Yanai, M., Uwasawa, M. & Shimizu, Y. (2000). Development of a New Multinutrient Extraction Method for Macro- and Micro- Nutrients in Arable Land Soil. Soil Sci. Plant Nutr., 46 (2), pp. 299–313. DOI:10.1080/00380768.2000.10408786
Go to article

Authors and Affiliations

Kamila Stępień
1
Piotr Stępień
1
Urszula Piszcz
1
Zofia Spiak
1

  1. Wroclaw University of Environmental and Life Sciences, Department of Plant Nutrition, Poland
Download PDF Download RIS Download Bibtex

Abstract

Plant growth-promoting rhizobacteria (PGPR) isolated from the rhizosphere soil of eight field crops at different locations in Egypt were identified. Rhizobacteria strains were identified as Bacillus endophyticus AW1 5, B. filamentosus EM9, ET3, Micrococcus luteus KT2, FW9, FC13, SaW4, Enterobacter cloacae SK18, Pseudomonas azotoformans TPo10, Citrobacter braakii TC3. All isolates solubilised insoluble phosphate and produced IAA, while only six were able to produce siderophores in vitro. Vegetative growth and yield of wheat cv. ‘Sakha 94’ were enhanced after the application of single inoculation of each isolate compared to the control. Grain yield was increased by 20.7– 96.5% over the control according to bacterial isolates. Available phosphorus (P) and counts of total bacteria in soil were observed to be significantly increased in treatments than in control. After the wheat harvest, soil pH was observed to be decreased, and a highly significant negative correlation was observed between soil pH and the levels of available phosphorus. Significant increases in grain and straw yields, as well as uptake of nitrogen (N) and P by plants, were observed due to inoculation with PGPR isolates. Levels of photosynthetic pigments, free amino acids, free phenolics, and reducing sugars in flag leaf and spikes were significantly enhanced by the application of all PGPR isolates compared to the control. Thus this study identifies the PGPR isolates for the improvement of the growth, yield, and quality of wheat. The study may be also useful for field evaluation under different soils and environmental conditions before generalising PGPR isolates as biofertilisers.
Go to article

Authors and Affiliations

Samy A.E.M. Abdelazeem
1
Samar M. Al-Werwary
2
Taha A.E. Mehana
2
Mohamed A. El-Hamahmy
1
ORCID: ORCID
Hazem M. Kalaji
3
ORCID: ORCID
Anshu Rastogi
4
ORCID: ORCID
Nabil I. Elsheery
5
ORCID: ORCID

  1. Suez Canal University, Faculty of Agriculture, Department of Soil and Water, Ismailia, Egypt
  2. Suez Canal University, Faculty of Agriculture, Department of Agricultural Botany, Ismailia, Egypt
  3. Institute of Technology and Life Sciences – National Research Institute, Falenty, Poland
  4. Poznan University of Life Sciences, Department of Ecology and Environmental Protection, Laboratory of Bioclimatology, Poznań, Poland
  5. Tanta University, Faculty of Agriculture, Agricultural Botany Department, Seberbay Campus, 31257, Tanta, Egypt
Download PDF Download RIS Download Bibtex

Abstract

Mineral fertilisers are one of the most important nutrients that plants need in large quantities, which help to greatly increase crop yields, and yeast is considered a bio-stimulator of plants. However incorrect implementation of both can make them more susceptible to pest infestations. The mealybug, Phenacoccus solenopsis (Hemiptera: Pseudococcidae), is an economically important polyphagous pest that destroys okra plants in Egypt. This work focused on the evaluation of mealybug infestations and okra plant productivity responses to mineral fertilisers (nitrogen and phosphorus), yeast (without and with) and their interactions. This study was executed in a private okra field (‘Balady’ cultivar) in Luxor Governorate, Egypt, during 2021 and 2022 seasons. A split plot design was applied, where two levels (with and without yeast) were used in the main plots, where seven levels of nitrogen and phosphorus were applied in the split plots. The results indicated that the addition of 286 kg N∙ha –1, 143 kg P∙ha –1 and yeast to okra plants led to a maximum increase in the population densities of pest, and this caused a decrease in the vegetative stage of okra that would affect the final yield as compared to the other treatments throughout the two seasons. However, the application of 190 kg N∙ha –1, 107 kg P∙ha –1, and yeast to okra plants gave the highest values for vegetative growth characteristics and resulting yield during the two studied seasons. This work aids farmers in improving okra production by comprehending good farming practices and avoiding the spread of mealybugs.
Go to article

Authors and Affiliations

Moustafa M.S. Bakry
1
ORCID: ORCID
Yani Maharani
2
ORCID: ORCID
R.O.H. Allam
3
ORCID: ORCID

  1. Agricultural Research Center, Plant Protection Research Institute, Department of Scale Insects and Mealybugs Research, 7, Nady El-Sayied Street, 12619, Dokki – Giza, Egypt
  2. Universitas Padjadjaran, Faculty of Agriculture, Department of Plant Pests and Diseases, Jln. Ir. Soekarno km. 21, Jatinangor, 45363, Sumedang, West Java, Indonesia
  3. South Valley University, Faculty of Agriculture, Plant Protection Department, Masaken Othman Rd, 83523, Qena, Egypt
Download PDF Download RIS Download Bibtex

Abstract

The study included bituminous coal seams (30 samples coal from the Bogdanka and Chełm deposits)

of the Lublin Formation, the most coal-bearing strata in the best developed and recognized in

terms of mining parts of the Lublin Coal Basin in Poland. High phosphorus concentrations in coal of

the Lublin Formation were found (1375 g/Mg) as well as P2O5 in coal ash (2.267 wt%). The phosphorus

contents in coal and coal ash from the 385 and 391 coal seams in the area of the Lubelski Coal Bogdanka

Mine and in the area of its SE neighbor is the highest (max. 2.644 wt. % in coal and 6.055 wt. %

of P2O5 in coal ash). It has been shown that mineral matter effectively affects phosphorus contents

in coal and coal ash. At the same time, phosphate minerals (probably apatite and crandallite) present

in kaolinite aggregates of tonsteins contain the most of phosphorus and have the greatest impact on

the average P content in the 382, 385, 387, and 391. The secondary source of phosphorus in these

coal seams and main source of phosphorus in these coal deposits that do not contain mineral matter

of pyroclastic origin (378, 389, 394) may be clay minerals, which absorbed phosphorus compounds

derived from organic matter released during coalification. Phosphorus-rich ash from the combustion

of the Lublin Formation coal tend to be environmentally beneficial to the environment and also useful

for improving the soil quality. Due to the low degree of coalification and high content of phosphorus

in coal, this coals of little use for coking.

Go to article

Authors and Affiliations

Henryk Ryszard Parzentny
Download PDF Download RIS Download Bibtex

Abstract

Due to insufficient operation efficiency, the studied treatment plant has undergone modernization. The aim of this study was to assess whether this modernization improved quality of the STP effluent and water quality in the receiver. The research period of fifty months covered time before and after the modernization. Samples were collected in four sites – upstream and downstream of the STP and by the sewage discharge. Electrolytic conductivity, water temperature and pH were measured onsite. Chemical analyzes were based on ion chromatography and determined the concentration of NH4+, NO3-, NO2-, PO43-, TDS. Microbiological analysis comprised serial dilutions to assess the number of mesophilic and psychrophilic bacteria and membrane filtration to enumerate E. faecalis, total and fecal coliforms as well as total and fecal E. coli. Values of most analyzed parameters did not improve after the modernization, or improved for a very short period of time (NH4+), while some of them even increased, such as PO43-, total and thermotolerant coliforms and E. coli. The maximum value of thermotolerant E. coli reached nearly 7 million CFU/100 ml and was observed after modernization. Also at the sites situated downstream of the STP some of analyzed parameters increased. The conducted modernization did not improve the quality of treated sewage and even a further deterioration was observed. It could have been a result of rapidly growing number of tourists visiting the studied area, thus generating large amounts of sewage causing STP overload coupled with poor water and wastewater management. Significant percentage of unregistered tourists hinders proper assessment of the STP target efficiency.

Go to article

Authors and Affiliations

Anna Lenart-Boroń
Anna Bojarczuk
Łukasz Jelonkiewicz
Mirosław Żelazny
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the research results for the soils sampled from the area located in the eastern part of the Chodzieskie Lakes, between the Middle Noteć River Valley and the Wełna River Valley, the right tributary of the Warta River. The research involved 7 soil samples from the surface horizons, allocated to the cultivation of various plant species (cereals and vegetable crops). The following were determined in the soil material: the content of phytoavailable forms of selected heavy metals Zn, Cu, Pb, Ni, Fe and Mn, active and available to plants phosphorus against the activity of selected oxydo-reduction and hydrolytic enzymes. The soil under the vegetable crops showed a very high richness in phosphorus available to plants, which must have been related to an intensive fertilisation. There were identified relatively low contents of the available forms of the heavy metals investigated, the fact that points to their natural content in soil, which triggered the inhibition of neither the oxydo-reduction nor hydrolytic enzymes.

Go to article

Authors and Affiliations

Joanna Lemanowicz
Agata Bartkowiak
Download PDF Download RIS Download Bibtex

Abstract

The research objective was to study temporal and spatial relations between specific phosphorus species as well as to examine total phosphorus content in the bottom sediments of an anthropogenic, hypertrophic limnic ecosystem Rybnik Reservoir, functioning under thermal pollution conditions. The chemical extraction procedure for the speciation of bioavailable phosphorus forms was used. It was found that available algae phosphorus was the most dominant phosphorus species in both sediment layers (83%), while the lower share was readily desorbed phosphorus form (0.1%). The phosphorus species concentrations depended on the organic matter concentration. The differences between phosphorus species contents in the upper (5 cm) and lower (15–20 cm) sediment core layers were low. The biologically active sediment layer extended from the sediment surface to at least 20 cm depth of the sediment core. Distributions of the concentrations within the year and at specific sampling points resulted from the variability observed for particular points and transformation intensity. Furthermore in the following study, the reaction rate constant for the increase and decrease in the concentrations of the phosphorus species in sediments was given. It was indicated that the speed of the phosphorus species transformations was affected by the environment temperature. In the heated water discharge zone (water temp. 17–35°C) the concentrations of selected speciation phosphorus forms increased more than in the dam zone (5–25°C). It was also found that the abundance of the bottom sediments with phosphorus species was related to the oblong and transverse asymmetry of reservoir depth.

Go to article

Authors and Affiliations

Maciej Kostecki
Malwina Tytła
Joanna Kernert
Katarzyna Stahl
Download PDF Download RIS Download Bibtex

Abstract

The elemental composition and morphology of aerobic granules in sequencing batch reactors (GSBRs) treating high-nitrogen digester supernatant was investigated. The investigation particularly focused on the effect of the number of anoxic phases (one vs. two) in the cycle and the dose of external organics loading (450 mg COD/(L·cycle) vs. 540 mg COD/(L·cycle)) on granule characteristics. Granules in all reactors were formed of many single cells of rod and spherical bacteria. Addition of the second anoxic phase in the GSBR cycle resulted in enhanced settling properties of the granules of about 10.6% and at the same time decreased granule diameter of about 19.4%. The study showed that external organics loading was the deciding factor in the elemental composition of biomass. At 540 mg COD/(L·cycle) the granules contained more weight% of C, S and N, suggesting more volatile material in the granule structure. At lower organics loadings granules had the higher diameter of granules which limited the diffusion of oxygen and favored precipitation of mineral compounds in the granule interior. In this biomass higher content of Mg, P and Ca, was observed.

Go to article

Authors and Affiliations

Agnieszka Cydzik-Kwiatkowska
Paulina Rusanowska
Katarzyna Głowacka
Download PDF Download RIS Download Bibtex

Abstract

Organic carbon, nitrogen, and phosphorus in the soils of the High Arctic play an important role in the context of global warming, biodiversity, and richness of tundra vegetation. The main aim of the present study was to determine the content and spatial distribution of soil organic carbon (SOC), total nitrogen (N tot ), and total phosphorus (P tot ) in the surface horizons of Arctic soils obtained from the lower part of the Fuglebekken catchment in Spitsbergen as an example of a small non−glaciated catchment representing uplifted marine terraces of the Svalbard Archipelago. The obtained results indicate that surface soil horizons in the Fuglebekken catchment show considerable differences in content of SOC, N tot , and P tot . This mosaic is related to high variability of soil type, local hydrology, vegetation (type and quantity), and especially location of seabird nesting colony. The highest content of SOC, N tot , and P tot occurs in soil surface horizons obtained from sites fertilized by seabird guano and located along streams flowing from the direction of the seabird colony. The content of SOC, N tot , and P tot is strongly negatively correlated with distance from seabird colony indicating a strong influence of the birds on the fertility of the studied soils and indirectly on the accumulation of soil organic matter. The lowest content of SOC, N tot , and P tot occurs in soil surface horizons obtained from the lateral moraine of the Hansbreen glacier and from sites in the close vicinity of the lateral moraine. The content of N tot ,P tot , and SOC in soil surface horizons are strongly and positively correlated with one another, i.e. the higher the content of nutrients, the higher the content of SOC. The spatial distribution of SOC, N tot , and P tot in soils of the Hornsund area in SW Spitsbergen reflects the combined effects of severe climate conditions and periglacial processes. Seabirds play a crucial role in nutrient enrichment in these weakly developed soils.
Go to article

Authors and Affiliations

Wojciech Szymański
Bronisław Wojtuń
Mateusz Stolarczyk
Janusz Siwek
Joanna Waścińska

This page uses 'cookies'. Learn more