Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a method of measuring the angle of rotation and twist using a tilted fibre Bragg grating

(TFBG) periodic structure with a tilt angle of 6◦, written into a single-mode optical fibre. It has been shown

that the rotation of the sensor by 180◦ causes a change in the transmission coefficient from 0.5 to 0.84 at

a wavelength of 1541.2 nm. As a result of measurements it was determined that the highest sensitivity can

be obtained for angles from 30◦ to 70◦ in relation to the basic orientation. The change in the transmission

spectrum occurs for cladding modes that change their intensity with the change in the polarization of light

propagating through the grating. The same structure can also be used to measure the twist angle. The

possibility of obtaining a TFBG twist by 200◦ over a length of 10 mm has been proved. This makes it

possible to monitor both the angle of rotation and the twist of an optical fibre with the fabricated TFBG.

Go to article

Authors and Affiliations

Sławomir Cięszczyk
Piotr Kisała
Krzysztof Skorupski
Patryk Panas
Jacek Klimek
Download PDF Download RIS Download Bibtex

Abstract

This paper outlines a measurement method of properties of microstructured optical fibers that are useful in sensing applications. Experimental studies of produced photonic-crystal fibers allow for a better understanding of the principles of energy coupling in photonic-crystal fibers. For that purpose, fibers with different filling factors and lattice constants were produced. The measurements demonstrated the influence of the fiber geometry on the coupling level of light between the cores. For a distance between the cores of 15 μm, a very low level (below 2%) of energy coupling was obtained. For a distance of 13 μm, the level of energy transfer to neighboring cores on the order of 2-4% was achieved for a filling factor of 0.29. The elimination of the energycoupling phenomenon between the cores was achieved by duplicating the filling factor of the fiber. The coupling level was as high as 22% in the case of fibers with a distance between the cores of 8.5 μm. Our results can be used for microstructured-fiber sensing applications and for transmission-channel switching in liquid-crystal multi-core photonic fibers.

Go to article

Authors and Affiliations

Jacek Klimek
Download PDF Download RIS Download Bibtex

Abstract

This paper comprehensively presents key issues in design of an original optoelectronic measurement device built to assess amount of suspended particulate matter. The paper is introduced with a short explanation of concerns with a suspended particulate matter, what role it has in the air quality and how it affects health of human population. Then, problems of construction of the measurement device supported by a theoretical explanation on the basis of Mie theory are discussed. Subsequently, it is followed by an analysis of the device operation both in laboratory and in real conditions. Results obtained with the presented device are compared with the professional measurement equipment and an expensive, outdoor measurement station. Paper is concluded with observations of differences in spatio-temporal PM change at very close but significantly different city locations.

Go to article

Authors and Affiliations

L. Makowski
B. Dziadak
M. Suproniuk

This page uses 'cookies'. Learn more