Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The energy efficiency of photovoltaic modules is one of the most important aspects in energetic and economic aspects of the project related to system installations. The efficiency of modules and the electricity produced by photovoltaic conversion in solar modules is affected by many factors, both internal, related to the module structure itself and its technical and external factors related to the energy infrastructure, which includes: cabling, inverters, climate conditions prevailing at the micro-installation location and the orientation and angle of inclination of the solar modules. The installation of photovoltaic modules should be preceded by an energy efficiency analysis, which will help to indicate the optimal solution adapted to the given conditions. The article presents a comparative analysis of the amount of energy produced under real and simulated conditions. Analyzes were made on the basis of research carried out in the Wind and Solar Energy Laboratory located at the AGH University of Science and Technology, data from solar irradiation data-bases and computer software for estimating energy resources. The study examined the correlation of the solar irradiation on the modules and the amount of electricity generated in the photovoltaic module. The electricity produced by the module was compared under real conditions and simulated based on two sources of data. The comparison and analysis of the amount of energy of the module were also made, taking simulated different angles of the module’s inclination into account.

Go to article

Authors and Affiliations

Bartosz Soliński
Monika Stopa
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of the energy analysis of the conversion of solar radiation energy into electrical energy in Polish weather conditions. The effect of sunlight and working temperature on the photovoltaic module on its power curve P = f(U) is shown. STC and NOCT conditions are described for which the manufacturers specify the parameters of the photovoltaic modules. The manufacturers of photovoltaic panels should give the PPV = f(E) characteristic for the different values of the operating temperature of the modules. An analysis of the economic efficiency of a photovoltaic power plant investment of 1 MWp taking the current legal regulations for the three variants into account was presented. Variant I – the investor benefits from the support of public aid of operational only, Variant II – the investor benefits from the support of public aid for investment in the amount of PLN 1 million, Variant III – the investor benefits from the support of public aid for investment in the amount of PLN 2 million. For all variants, indicators for assessing the economic effectiveness of the investment and the value of the auction price from the maximum price to the price at which the project loses its profitability are determined.

Go to article

Authors and Affiliations

Bartosz Ceran
Radosław Szczerbowski
Download PDF Download RIS Download Bibtex

Abstract

This article introduces a laboratory-scale concept and research on photovoltaic (PV) modules designed for building integrated photovoltaics (BIPV) market, with enhanced architectural aesthetics and no protective glass. The proposed concept involves replacing a typical glass protective and load-bearing element of PV modules with an ethylene tetrafluoroethylene (ETFE) foil while using an aluminium sheet as a load-bearing element in the system. To further enhance the visual appeal of the solution, special modifications were proposed to the geometry of the front security foil. To confirm the feasibility of the proposed concept for mass production, critical tests were conducted on the material system and the process of modifying the surface of the ETFE foil. These tests included evaluating adhesion strength between layers, optical transmission coefficients, and electrical parameters of the developed PV modules. Additionally, the effect of the ETFE film modification on the formation of micro-cracks in solar cells was also investigated.
Go to article

Authors and Affiliations

Kazimierz Drabczyk
1
ORCID: ORCID
Grażyna Kulesza-Matlak
1
ORCID: ORCID
Piotr Sobik
2
ORCID: ORCID
Olgierd Jeremiasz
2
ORCID: ORCID

  1. Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. Reymonta 25, 30-059 Kraków, Poland
  2. Helioenergia Sp. z o.o., ul. Rybnicka 68, 44-238 Czerwionka-Leszczyny, Poland
Download PDF Download RIS Download Bibtex

Abstract

The degradation of photovoltaic modules and their subsequent loss of performance has a serious impact on the total energy generation potential. The lack of real-time information on the output power leads to additional losses since the panels may not be operating at their optimal point. To understand the behaviour, numerically simulate the characteristics and identify the optimal operating point of a photovoltaic cell, the parameters of an equivalent electrical circuit must first be identified. The aim of this work is to develop a total least-squares based algorithm which can identify those parameters from the output voltage and current measurements, taking into consideration the uncertainties on both measured quantities. This work presents a comparative study of the Ordinary Least Squares (OLS) and Total Least Squares (TLS) approaches to the estimation of the parameters of a photovoltaic cell.
Go to article

Bibliography

[1] Blaabjerg, F., & Ionel, D. M. (2015). Renewable Energy Devices and Systems – State-of-the-Art Technology, Research and Development, Challenges and Future Trends. Electric Power Components and Systems, 43(12), 1319–1328. https://doi.org/10.1080/15325008.2015.1062819
[2] Höök, M., & Tang, X. (2013). Depletion of fossil fuels and anthropogenic climate change – A review. Energy Policy, 52, 797–809. https://doi.org/10.1016/j.enpol.2012.10.046
[3] Gangopadhyay, U., Jana, S., & Das, S. (2013). State of Art of Solar Photovoltaic Technology. Conference Papers in Energy, 2013, 1–9. https://doi.org/10.1155/2013/764132
[4] Mao, M., Cui, L., Zhang, Q., Guo, K., Zhou, L.,&Huang, H. (2020). Classification and summarization of solar photovoltaic MPPT techniques: A review based on traditional and intelligent control strategies. Energy Reports, 6, 1312–1327.
[5] Ahmed, M. T., Rashel, M. R., Faisal, F.,&Tlemçani, M. (2020). Non-iterative MPPT Method:AComparative Study. International Journal of Renewable Energy Research (IJRER), 10(2), 549–557.
[6] Azmi, F. F. A., Sahraoui, B., & Muzakir, S. K. (2019). Study of ZnO nanospheres fabricated via thermal evaporation for solar cell application. Makara Journal of Technology, 23(1), 11–15.
[7] Boyd, M. T., Klein, S. A., Reindl, D. T., & Dougherty, B. P. (2011). Evaluation and validation of equivalent circuit photovoltaic solar cell performance models. Journal of Solar Energy Engineering, 133(2). https://doi.org/10.1115/1.4003584
[8] Bader, S., Ma, X., & Oelmann, B. (2020). A Comparison of One- and Two-Diode Model Parameters at Indoor Illumination Levels. IEEE Access, 8, 172057–172064. https://doi.org/10.1016/10.1109/ACCESS.2020.3025146
[9] Ciani, L., Catelani, M., Carnevale, E. A., Donati, L., & Bruzzi, M. (2015). Evaluation of the Aging Process of Dye-Sensitized Solar Cells Under Different Stress Conditions. IEEE Transactions on Instrumentation and Measurement, 64(5), 1179–1187. https://doi.org/10.1109/TIM.2014.2381352
[10] Ndiaye, A., Charki, A., Kobi, A., Kébé, C. M. F., Ndiaye, P. A., & Sambou, V. (2013). Degradations of silicon photovoltaic modules: A literature review. Solar Energy, 96, 140–151. https://doi.org/10.1016/10.1016/j.solener.2013.07.005
[11] Lay-Ekuakille, A., Ciaccioli, A., Griffo, G., Visconti, P., & Andria, G. (2018). Effects of dust on photovoltaic measurements: A comparative study. Measurement, 113, 181–188. http://dx.doi.org/10.1016/10.1016/j.measurement.2017.06.025
[12] Cristaldi, L., Faifer, M., Rossi, M., Toscani, S., Catelani, M., Ciani, L., & Lazzaroni, M. (2014). Simplified method for evaluating the effects of dust and aging on photovoltaic panels. Measurement, 54, 207–214. https://doi.org/10.1016/j.measurement.2014.03.001
[13] Carullo, A., Ferraris, F., Vallan, A., Spertino, F., & Attivissimo, F. (2014). Uncertainty analysis of degradation parameters estimated in long-term monitoring of photovoltaic plants. Measurement, 55, 641–649. https://doi.org/10.1016/j.measurement.2014.06.003
[14] Cubas, J., Pindado, S., & Victoria, M. (2014). On the analytical approach for modeling photovoltaic systems behavior. Journal of Power Sources, 247, 467–474. https://doi.org/10.1016/j.jpowsour.2013.09.008
[15] Batzelis, E. I., & Papathanassiou, S. A. (2016). A Method for the Analytical Extraction of the Single-Diode PV Model Parameters. IEEE Transactions on Sustainable Energy, 7(2), 504–512. https://doi.org/10.1109/TSTE.2015.2503435
[16] Hassan Ali, M., Rabhi, A., Haddad, S., & El Hajjaji, A. (2017). Real-Time Determination of Solar Cell Parameters. Journal of Electronic Materials, 46(11), 6535–6543. https://doi.org/10.1016/10.1007/s11664-017-5697-0
[17] Subudhi, B., & Pradhan, R. (2018). Bacterial Foraging Optimization Approach to Parameter Extraction of a Photovoltaic Module. IEEE Transactions on Sustainable Energy, 9(1), 381–389. https://doi.org/10.1109/TSTE.2017.2736060
[18] Long, W., Cai, S., Jiao, J., Xu, M., & Wu, T. (2020). A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models. Energy Conversion and Management, 203, 112243. https://doi.org/10.1016/j.enconman.2019.112243
[19] Liao, Z., Chen, Z., & Li, S. (2020). Parameters Extraction of Photovoltaic Models Using Triple- Phase Teaching-Learning-Based Optimization. IEEE Access, 8, 69937–69952. https://doi.org/10.1016/10.1109/ACCESS.2020.2984728
[20] Ibrahim, I. A., Hossain, M. J., Duck, B. C., & Fell, C. J. (2020). An AdaptiveWind-Driven Optimization Algorithm for Extracting the Parameters of a Single-Diode PV Cell Model. IEEE Transactions on Sustainable Energy, 11(2), 1054–1066. https://doi.org/10.1109/TSTE.2019.2917513
[21] Gomes, R. C. M., Vitorino, M. A., Corrêa, M. B. de R., Fernandes, D. A.,&Wang, R. (2017). Shuffled Complex Evolution on Photovoltaic Parameter Extraction:AComparative Analysis. IEEE Transactions on Sustainable Energy, 8(2), 805–815. https://doi.org/10.1109/TSTE.2016.2620941
[22] Dkhichi, F., Oukarfi, B., Fakkar, A., & Belbounaguia, N. (2014). Parameter identification of solar cell model using Levenberg–Marquardt algorithm combined with simulated annealing. Solar Energy, 110, 781–788. https://doi.org/10.1016/j.solener.2014.09.033
[23] Alam, D. F., Yousri, D. A., & Eteiba, M. B. (2015). Flower Pollination Algorithm based solar PV parameter estimation. Energy Conversion and Management, 101, 410–422. https://doi.org/10.1016/j.enconman.2015.05.074
[24] Diab, A. A. Z., Sultan, H. M., Do, T. D., Kamel, O. M., & Mossa, M. A. (2020). Coyote Optimization Algorithm for Parameters Estimation of Various Models of Solar Cells and PV Modules. IEEE Access, 8, 111102–111140. https://doi.org/10.1109/ACCESS.2020.3000770
[25] Mesbahi, O., Tlemçani, M., Janeiro, F. M., Hajjaji, A., & Kandoussi, K. (2020). A Modified Nelder– Mead Algorithm for Photovoltaic Parameters Identification. International Journal of Smart Grid – IJSmartGrid, 4(1), 28–37.
[26] Mesbahi, O., Tlemçani, M., Janeiro, F. M., Abdeloawahed, H., & Khalid, K. (2019). Estimation of Photovoltaic Panel Parameters by a Numerical Heuristic Searching Algorithm. In 2019 8th International Conference on Renewable Energy Research and Applications (ICRERA) (pp. 401-406). IEEE. https://doi.org/10.1109/ICRERA47325.2019.8996779
[27] Hutcheson, G. D. (2011). Ordinary least-squares regression. L. Moutinho and G.D. Hutcheson, The SAGE Dictionary of Quantitative Management Research, 224–228.
[28] Hadjdida, A., Bourahla, M., Ertan, H. B., & Bekhti, M. (2018). Analytical Modelling, Simulation and Comparative Study of Multi-Junction Solar Cells Efficiency. International Journal of Renewable Energy Research, 8(4), 1824–1832.
[29] Salmi, T., Bouzguenda, M., Gastli, A.,&Masmoudi, A. (2012).MATLAB / Simulink Based Modelling of Solar Photovoltaic Cell. International Journal of Renewable Energy Research (IJRER), 2(2), 213– 218.
[30] Dimova-Malinovska, D. (2010). The state-of-the-art and future development of the photovoltaic technologies – The route from crystalline to nanostructured and new emerging materials. Journal of Physics: Conference Series, 253(1). https://doi.org/10.1088/1742-6596/253/1/012007
[31] Mahmoud, Y., Xiao, W., & Zeineldin, H. H. (2012). A Simple Approach to Modeling and Simulation of Photovoltaic Modules. IEEE Transactions on Sustainable Energy, 3(1), 185–186. https://doi.org/10.1109/TSTE.2011.2170776
[32] Ishaque, K., Salam, Z., & Taheri, H. (2011). Simple, fast and accurate two-diode model for photovoltaic modules. Solar Energy Materials and Solar Cells, 95(2), 586–594. https://doi.org/10.1016/j.solmat.2010.09.023
[33] Babu, B. C., & Gurjar, S. (2014). A Novel Simplified Two-Diode Model of Photovoltaic (PV) Module. IEEE Journal of Photovoltaics, 4(4), 1156–1161. https://doi.org/10.1109/JPHOTOV.2014.2316371
[34] Nelder, J. A.,&Mead, R. (1965).Asimplex method for function minimization. The Computer Journal, 7(4), 308–313. https://doi.org/10.1093/comjnl/7.4.308
[35] Rashel, M. R., Rifat, J., Gonçalves, T., Tlemcani, M., & Melicio, R. (2017). Sensitivity Analysis Through Error Function of Crystalline-Si Photovoltaic Cell Model Integrated in a Smart Grid. International Journal of Renewable Energy Research, 7(4).
Go to article

Authors and Affiliations

Oumaima Mesbahi
1 2
Mouhaydine Tlemçani
1 2
Fernando M. Janeiro
1 2 3
Abdeloawahed Hajjaji
4
Khalid Kandoussi
4

  1. University of Évora, Department of Mechatronics, R. Romão Ramalho 59, 7000-671 Évora, Portugal
  2. Instrumentation and Control Laboratory, Institute of Earth Sciences, Évora, Portugal
  3. Instituto de Telecomunicações, Lisbon, Portugal
  4. University of Chouaib Doukkali, Energy Engineering Laboratory, National School of Applied Sciences, El Jadida, Morocco
Download PDF Download RIS Download Bibtex

Abstract

Power loss mechanisms in small area monolithic-interconnected photovoltaic modules (MIM) are described and evaluated. Optical and electrical losses are quantified and individual loss components are derived for loss mechanisms of small area radial (radius = 1 mm) pie-shaped six-segment GaAs MIM laser power converter. At low monochromatic homogeneous illumination (Glow = 1.8 W/cm2, λ0 = 809 nm) conversion efficiency of the cell, designed for a low irradiance, is reduced by 3.7%abs. due to isolation trench optical losses and by 7.0%abs. due to electrical losses (mainly perimeter recombination). Electrical losses in a device designed for a high irradiance, result in 18%abs. decrease of output power under homogeneous monochromatic illumination (Ghigh = 83.1 W/cm2, λ0 = 809 nm), while 11.6%abs. losses are attributed to optical reasons. Regardless the irradiance level, optical losses further increase if the device is illuminated with a Gaussian instead of an ideal flattop beam profile. In this case, beam spillage losses occur and losses due to isolation trenches and reflections from metallization are elevated. On top of that, additional current mismatch losses occur, if individual MIM’s segments are not equally illuminated. For the studied device, a 29 μm off center misalignment of a Gaussian shaped beam (with 1% spillage) reduces the short circuit current Isc by 10%abs. due to the current mismatch between segments.

Go to article

Authors and Affiliations

R. Kimovec
H. Helmers
A.W. Bett
M. Topič

This page uses 'cookies'. Learn more