Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The Family Neokoninckophyllidae and its type genus Neokoninckophyllum Fomichev, 1939 (type species: N. tanaicum Fomichev, 1939) are discussed and emended. In addition, the genera Orygmophyllum Fomichev, 1953 and Yuanophylloides Fomichev, 1953, originally included in the Families Campophyllidae Wedekind, 1922 and Lophophyllidae Grabau, 1928, respectively, are emended as well and transferred to the Neokoninckophyllidae. Two early Bashkirian species, viz. Yuanophylloides rectus (Vassilyuk in Aizenverg et al., 1983) and Y. inauditus (Moore and Jeffords, 1945), and the Moscovian Neokoninckophyllum sp. nov. are described on the basis of new collections from the Donets Basin. Neokoninckophyllum tanaicum, Yuanophylloides gorskyi Fomichev, 1953 (both Moscovian in age) and Y. cruciformis Fomichev, 1953 (latest Bashkirian), are redescribed on the basis of peels taken from Fomichev’s (1953) type specimens. Derivation of the Family Neokoninckophyllidae from the Subfamily Dibunophyllinae Wang, 1950 is postulated and phylogenetic links within the former are hinted at. The occurrence of Yuanophylloides inauditus in both the Donets Basin and the Western Interior Province of North America points to marine communication between those areas during the Bashkirian. The slightly earlier appearance of the oldest neokoninckophyllids in the Donets Basin, in comparison to North America (i.e., R1 vs R2 ammonoid biozones), documents the common roots and monophyletic development of the Neokoninckophyllidae in both areas.

Go to article

Authors and Affiliations

Jerzy Fedorowski
Download PDF Download RIS Download Bibtex

Abstract

The systematic position of Sorbus population occurring in the Pieniny Mts. is controversial. To verify its taxonomic status we studied the ITS sequence of closely related species of the S. aria group: Sorbus sp. from the Pieniny Mts., S. aria from the Tatra Mts., S. graeca from the Balkans, and other well-distinguished native Polish Sorbus species (S. aria, S. aucuparia, S. intermedia and S. torminalis). As a reference we examined Sorbus populations closest to the Pieniny Mts. where S. graeca was reported to occur, in Slovakia. The results indicate that the Sorbus plants found in the Pieniny Mts. differ genetically from those in the Tatra Mts. but are identical to those collected from the Vihorlat Mts. in Slovakia and are closely related to S. graeca from the Balkans

Go to article

Authors and Affiliations

Jolanta Dłużewska
Ireneusz Ślesak
Jerzy Kruk
Download PDF Download RIS Download Bibtex

Abstract

Cryptosporidium spp., and Giardia duodenalis are intestinal protozoan parasites known to infect humans and various animals and cause diarrhea. This study aimed at determining the prevalence and genotype of Cryptosporidium spp. and Giardia duodenalis in sheep in different locations of Siirt province. The fecal material for this study was collected from 500 sheep in different locations of Siirt province, Turkey. Fecal samples obtained from sheep were examined for Cryptosporidium spp. by Kinyoun Acid Fast staining and the Nested PCR method. Microscopic and Nested PCR methods revealed a prevalence of 2.4% (12/500) and 3.6% (18/500), respectively. Sequence analysis revealed the presence of C. ryanae, C. andersoni, and zoonotic C. parvum. In terms of Giardia duodenalis, 8.4% (42/500) and 10.2% (51/500) prevalence was determined using Nativ-Lugol and Nested PCR methods, respectively. Using sequence analysis, zoonotic assemblages A and B as well as assemblages E and D were detected. As a result of this study, both the prevalence of Cryptosporidium spp. and Giardia duodenalis and the presence of species that appear to be host-specific, as well as those known to be zoonotic, were revealed. A large-scale study is needed to understand the impact of these agents on sheep farming and their consequences on human health.
Go to article

Bibliography

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403-410.
  2. Çelik BA, Çelik ÖY, Ayan A, Akyıldız G, Kılınç ÖO, Ayan ÖO, Ercan K (2023) Molecular Prevalence of Giardia duodenalis and Subtype Distribution (Assemblage E and B) in Calves in Siirt, Turkey. Egypt J Vet Sci 54: 457-463.
  3. Ballweber LR, Xiao L, Bowman DD, Kahn G, Cama VA (2010) Giardiasis in dogs and cats: update on epidemiology and public health significance. Trends Parasitol 26: 180-189.
  4. Barker IK, Carbonell PL (1974) Cryptosporidium agni sp. n. from lambs, and Cryptosporidium bovis sp. n. from a calf, with observations on the oocyst. Z Parasitenkd 44: 289-298.
  5. Caccio SM, De Giacomo M, Pozio E (2002) Sequence analysis of the beta-giardin gene and development of a polymerase chain reaction-restriction fragment length polymorphism assay to genotype Giardia duodenalis cysts from human faecal samples. Int J Parasitol 32: 1023-1030.
  6. Castro-Hermida JA, González-Warleta M, Mezo M (2007) Natural infection by Cryptosporidium parvum and Giardia duodenalis in sheep and goats in Galicia (NW Spain). Small Rumin Res 72: 96-100.
  7. Dessì G, Tamponi C, Varcasia A, Sanna G, Pipia AP, Carta S, Salis F, Díaz P, Scala A (2020) Cryptosporidium infections in sheep farms from Italy. Parasitol Res 119: 4211-4218.
  8. Fayer R, Santín M (2009) Cryptosporidium xiaoi n. sp.(Apicomplexa: Cryptosporidiidae) in sheep (Ovis aries). Vet Parasitol 164: 192-200.
  9. Gharekhani J, Heidari H, Youssefi M (2014) Prevalence of Cryptosporidium infection in sheep in Iran. Turkiye Parazitol Derg 38: 22-25.
  10. Giangaspero A, Paoletti B, Iorio R, Traversa D (2005) Prevalence and molecular characterization of Giardia duodenalis from sheep in central Italy. Parasitol Res 96: 32-37.
  11. Goma FY, Geurden T, Siwila J, Phiri IGK, Gabriël S, Claerebout E, Vercruysse J (2007) The prevalence and molecular characterisation of Cryptosporidium spp. in small ruminants in Zambia. Small Rumin Res 72: 77-80.
  12. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41:95-98.
  13. Jafari H, Jalali MH, Shapouri MS, Hajikolaii MR (2014) Determination of Giardia duodenalis genotypes in sheep and goat from Iran. J Parasit Dis 38: 81-84.
  14. Janoff EN, Reller LB (1987) Cryptosporidium species, a protean protozoan. J Clin Microbiol 25: 967-975.
  15. Jian Y, Zhang X, Li X, Karanis G, Ma L, Karanis P (2018) Prevalence and molecular characterization of Giardia duodenalis in cattle and sheep from the Qinghai-Tibetan Plateau Area (QTPA), northwestern China. Vet Parasitol 250: 40-44.
  16. Kiani-Salmi N, Fattahi-Bafghi A, Astani A, Sazmand A, Zahedi A, Firoozi Z, Ebrahimi B, Dehghani-Tafti A, Ryan U, Akrami-Mohajeri F (2019) Molecular typing of Giardia duodenalis in cattle, sheep and goats in an arid area of central Iran. Infect Genet Evol 75: 104021.
  17. Kılınç ÖO, Ayan A, Çelik BA, Çelik ÖY, Yüksek N, Akyıldız G, Oğuz FE (2023) The Investigation of Giardiasis (Foodborne and Waterborne Diseases) in Buffaloes in Van Region, Türkiye: First Molecular Report of Giardia duodenalis Assemblage B from Buffaloes. Pathogens 12: 106.
  18. Kızıltepe Ş, Ayvazoğlu C (2022) Investigation of Diarrhea Factors in Neonatal Lambs in Iğdır Region. ISPEC J Agrİ Sci 6: 189-194.
  19. Koçhan A, Şimşek A, İpek-Sayın DN, İçen H (2020) Severe Bloody Diarrhea in a Calf Infected with Giardia duodenalis. Dicle Üniv Vet Fak Derg 13: 179-182.
  20. Koinari M, Lymbery AJ, Ryan UM (2014) Cryptosporidium species in sheep and goats from Papua New Guinea. Exp Parasitol 141: 134-137.
  21. Lalle M, Pozio E, Capelli G, Bruschi F, Crotti D, Cacciò SM (2005) Genetic heterogeneity at the beta giardin locus among human and animal isolates of Giardia duodenalis and identification of potentially zoonotic subgenotypes. Int J Parasitol 35: 207-213.
  22. Majeed QA, El-Azazy OM, Abdou NE, Al-Aal ZA, El-Kabbany AI, Tahrani LM, AlAzemi MS, Wang Y, Feng Y, Xiao L (2018) Epidemiological observations on cryptosporidiosis and molecular characterization of Cryptosporidium spp. in sheep and goats in Kuwait. Parasitol Res 117: 1631-1636.
  23. Majewska AC, Werner A, Sulima P, Luty T (2000) Prevalence of Cryptosporidium in sheep and goats bred on five farms in west-central region of Poland. Vet Parasitol 89: 269-275.
  24. Minh BQ, Nguyen MA, Von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 30: 1188-1195.
  25. Mondebo JA, Abah AE, Awi-Waadu GD (2022) Cryptosporidium infection in cattle, goat and ram in Yenagoa abattoir Bayelsa State, Nigeria. Anim Res Int 19: 4499-4506.
  26. Olson ME, Thorlakson CL, Deselliers L, Morck DW, McAllister TA (1997) Giardia and Cryptosporidium in Canadian farm animals. Vet Parasitol 68: 375-381.
  27. Ozmen O, Yukari BA, Haligur M, Sahinduran S (2006) Observations and immunohistochemical detection of Coronavirus, Cryptosporidium parvum and Giardia intestinalis in neonatal diarrhoea in lambs and kids. Schweiz Arch Tierheilkd 148: 357-364.
  28. Paz e Silva FM, Lopes RS, Bresciani KD, Amarante AF, Araujo JP (2014) High occurrence of Cryptosporidium ubiquitum and Giardia duodenalis genotype E in sheep from Brazil. Acta parasitol 59: 193-196.
  29. Rekha KMH, Puttalakshmamma GC, D’Souza PE (2016) Comparison of different diagnostic techniques for the detection of cryptosporidiosis in bovines. Vet World 9: 211–215.
  30. Robertson LJ, Gjerde BK, Hansen EF (2010) The zoonotic potential of Giardia and Cryptosporidium in Norwegian sheep: a longitudinal investigation of 6 flocks of lambs. Vet Parasitol 171: 140-145.
  31. Romero-Salas D, Alvarado-Esquivel C, Cruz-Romero A, Aguilar-Domínguez M, Ibarra-Priego N, Merino-Charrez JO, Pérez de León AA, Hernández-Tinoco J (2016) Prevalence of Cryptosporidium in small ruminants from Veracruz, Mexico. BMC Vet Res 12: 14.
  32. Ryan U, Cacciò SM (2013) Zoonotic potential of Giardia. Int J Parasitol 43: 943-956.
  33. Sahraoui L, Thomas M, Chevillot A, Mammeri M, Polack B, Vallée I, Follet J, Ain-Baaziz H, Adjou KT (2019) Molecular characterization of zoonotic Cryptosporidium spp. and Giardia duodenalis pathogens in Algerian sheep. Vet Parasitol Reg Stud Reports 16: 100280.
  34. Santín M, Trout JM, Fayer R (2007) Prevalence and molecular characterization of Cryptosporidium and Giardia species and genotypes in sheep in Maryland. Vet Parasitol 146: 17-24.
  35. Soltane R, Guyot K, Dei-Cas E, Ayadi A (2007) Prevalence of Cryptosporidium spp.(Eucoccidiorida: Cryptosporiidae) in seven species of farm animals in Tunisia. Parasite 14: 335-338.
  36. Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44: W232-W235.
  37. Ulutas B, Voyvoda H (2004) Cryptosporidiosis in Diarrhoeic Lambs on a Sheep Farm. Türkiye Parazitol Derg 28:15-17.
  38. Wang H, Qi M, Zhang K, Li J, Huang J, Ning C, Zhang L (2016) Prevalence and genotyping of Giardia duodenalis isolated from sheep in Henan Province, central China. Infect Genet Evol 39: 330-335.
  39. Wilson JM, Hankenson FC (2010) Evaluation of an inhouse rapid ELISA test for detection of Giardia in domestic sheep (Ovis aries). J Am Assoc Lab Anim Sci 49: 809-813.
  40. Xiao L (2010) Molecular epidemiology of cryptosporidiosis: an update. Exp Parasitol 124: 80-89.
  41. Xiao L, Singh A, Limor J, Graczyk TK, Gradus S, Lal A (2001) Molecular characterization of Cryptosporidium oocysts in samples of raw surface water and wastewater. Appl Environ Microbiol 67: 1097-1101.
  42. Yang F, Ma L, Gou JM, Yao HZ, Ren M, Yang BK, Lin Q (2022) Seasonal distribution of Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in Tibetan sheep in Qinghai, China. Parasites Vectors 15: 394.
  43. Yang R, Jacobson C, Gardner G, Carmichael I, Campbell AJ, Ng-Hublin J, Ryan U (2014) Longitudinal prevalence, oocyst shedding and molecular characterisation of Cryptosporidium species in sheep across four states in Australia. Vet Parasitol 200: 50-58.
Go to article

Authors and Affiliations

B. Aslan Çelik
1
Ö.Y. Çelik
2
A. Ayan
3
Ö. Orunç Kılınç
4
G. Akyıldız
5
K. İrak
6
M.A. Selçuk
1
K. Ercan
2
V. Baldaz
2
Ö. Oktay Ayan
7

  1. Department of Parasitology, Faculty of Veterinary Medicine, Siirt University, Siirt, Turkey
  2. Department of Internal Medicine, Faculty of Veterinary Medicine, Siirt University, Siirt, Turkey
  3. Department of Genetics, Faculty of Veterinary Medicine, Van Yüzüncü Yıl University, Van, Turkey
  4. Özalp Vocational School, Van Yüzüncü Yıl University, Van, Turkey
  5. Department of Basic Health Sciences, Faculty of Health Sciences, Marmara University, İstanbul, Turkey
  6. Department of Biochemistry, Faculty of Veterinary Medicine, Siirt University, Siirt, Turkey
  7. Department of Parasitology, Van Yüzüncü Yıl University, Faculty of Medicine, Van, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Blastocystis spp. is a parasite that causes intestinal infection in humans and other animals. A few studies have been performed in Turkey on the distribution of Blastocystis in cattle. In this study, fecal samples were collected from 100 calves and subjected to analysis based on an SSU rRNA gene fragment. The overall prevalence of the disease was determined as 15% (15/100). This rate was 14.04% for females and 16.28% for males. In addition, three Blastocystis subtypes were identified: ST10, ST14, and novel subtypes ST25. To our knowledge, the ST25 subtype was reported with this study for the first time in Turkey. The nucleotide sequences (OM920832-OM920839) obtained in this study were deposited in GenBank. The results obtained will be useful for a better understanding of the epidemiology of Blastocystis spp., and its effects on public health.
Go to article

Authors and Affiliations

B. Aslan Çelik
1

  1. Department of Parasitology, Faculty of Veterinary Medicine, Siirt University, Siirt, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Cucumber mosaic virus (CMV; family Bromoviridae, genus Cucumovirus) is the most cosmopolitan plant virus occurring worldwide. In the present study, leaf samples showing deformations, mosaics, and chlorotic spots symptoms were collected from naturally infected Basella alba, Telfairia occidentalis and Talinum fruticosum in a home yard garden in Ibadan, Nigeria. Total nucleic acid was extracted from leaves and used as template for cDNA synthesis. RT-PCR was carried out using CMV-specific primers targeting RNA-1 segment. Samples were also tested by RT-PCR using Potyvirus and Begomovirus genusspecific primers. DNA fragments with the expected sizes of ~500 bp were amplified by using CMV-specific primers; however, the expected amplicons were not produced using specific primers used for the detection of potyviruses and begomoviruses. The nucleotide and deduced amino acid sequences obtained for the isolates studied contained 503–511 nt and 144 aa, respectively. The isolates shared 81.9–85.3% nucleotide and 74.3–77.8% amino acid sequence identities with each other. The results of BLASTN analyses showed the highest identities of the isolates (80–93%) with CMV strains from Japan, USA and South Korea. Alignment of deduced partial protein revealed multiple amino acid substitutions within the three isolates and high identities with CMV subgroup I. Phylogenetic analyses putatively categorized the isolates in close association with subgroup IB isolates. The three isolates clustered together into a separate subclade, indicating possible new CMV strains. The results provide the first molecular evidence for CMV infections of T. fruticosum and B. alba in Nigeria and seem to show the possible presence of new strain(s). These findings also add three new hosts to the list of natural host range of the virus in Nigeria.

Go to article

Authors and Affiliations

Adedapo Olutola Adediji
Download PDF Download RIS Download Bibtex

Abstract

Usnea aurantiaco-atra is the dominant flora around King George Island, Antarctica, whose specimens exhibited various phenotypes, even for those with the same ITS sequences in both mycobiont and photobiont. A comprehensive analysis of morphological traits of U. aurantiaco-atra including the reproductive structures, growth forms and ornamentation, cross section of the branches, and the substratum was carried out. Four arbitrary groups were identified based on their reproductive characters, but these groups cannot be distinguished from molecular phylogenetic trees based on fungal or algal ITS sequences. Further, the complicated morphological diversity of the thalli with the same ITS haplotypes in both mycobiont and photobiont suggest that some other factors in addition to the symbionts could influence the morphology of lichens. This implies that lichen is indeed a complex-mini-ecosystem rather than a dual symbiotic association of fungus and alga. Also, a lichenous fungi Phacopsis sp. was identified based on its anatomical characters and ITS sequence, which was also responsible for the black burls-like structures on U. aurantiaco-atra.
Go to article

Authors and Affiliations

Shunan Cao
Hongyuan Zheng
Yunshu Cao
Chuanpeng Liu
Lingxiang Zhu
Fang Peng
Qiming Zhou
Download PDF Download RIS Download Bibtex

Abstract

This paper is both a review and a study. It discusses the taxonomic status of Yellow Archangel (Galeobdolon luteum Huds.) from historical and contemporary perspectives, and gives a comprehensive list of synonyms for the discussed genera, species and lower taxonomic units, including their publication details. In the study it is postulated that G. luteum should be included in the genus Lamium. The hypothesis is verified by a comparative analysis between the representatives of the genera Galeobdolon and Lamium in four DNA regions: ITS, accD, rpoC1 and trnH-psbA. The analysis supported the determination of phylogenetic relationships among the studied taxa: G. luteum is not genetically distant enough from Lamium to be considered a separate genus, and integration of Galeobdolon and Lamium is legitimate.

Go to article

Authors and Affiliations

Katarzyna Krawczyk
Tadeusz Korniak
Jakub Sawicki
Download PDF Download RIS Download Bibtex

Abstract

Holoparasitic genera within the family Orobanchaceae are characterized by greatly reduced vegetative organs; therefore, molecular analysis has proved to be a useful tool in solving taxonomic problems in this family. For this purpose, we studied all species of the genera Orobanche and Phelipanche occurring in Central Europe, specifically in Poland, the Czech Republic, Slovakia, and Austria, supplemented by samples mainly from Spain, France, Germany, and Ukraine. They were investigated using nuclear sequences (ITS region) and a plastid trnLtrnF region. The aim of this study was to examine phylogenetic relationships within Orobanche and Phelipanche from Central Europe; we focused on problematic species and aggregates, recent taxonomic changes in these (rank and secondary ranks), and host ranges. The most interesting results concern the exlusion of O. mayeri from O. alsatica aggr. Additionally, following the rules of traditional taxonomy, the correct names and types of some secondary ranks are given and, as a result of this, a new combination below the Phelipanche genus is made (P. sect. Trionychon). The host ranges of the investigated species in Central Europe include 102 species from 12 families, most often from Asteraceae. For this purpose, ca. 400 localities were examined in the field. Moreover, data acquired from the literature and European and Asian herbaria were used.
Go to article

Authors and Affiliations

Renata Piwowarczyk
Magdalena Denysenko-Bennett
Grzegorz Góralski
Dagmara Kwolek
Óscar Sánchez Pedraja
Patryk Mizia
Magdalena Cygan
Andrzej J. Joachimiak

This page uses 'cookies'. Learn more