Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The increasing demand for noble metals boosts their price. In order to meet the increasing demand for elements, a number of technologies are being developed to recover elements already present in the environment.Traffic-related metal pollution is a serious worldwide concern. Roadside soils are constantly subjected to the deposition of metals released by tailpipe gases, vehicle parts, and road infrastructure components. These metals,especially platinum group elements from catalytic converters, accumulating in the soil pose a risk both for agricultural and residential areas. Phytomining is suggested as a novel technology to obtain platinum group metals from plants grown on the contaminated soil, rock, or on mine wastes. Interest in this method is growing as interest in the recovery of rare metals is also increasing. Based on the research of many authors, the sources and amounts of noble metals that accumulate in soil along communication routes have been presented. The paper presents also plants that can be used for phytomining.
Go to article

Bibliography

  1. Ahmed, E. & Holmstrom, S.J.M. (2014). Siderophores in environmental research: role and applications. Microb. Biotechnol., 7 (3), pp. 196-208, DOI: 10.1111/1751-7915.12117
  2. Ali, S., Abbas, Z., Rizwan, M., Zaheer, L.E., Yavas, I., Unay, Z., Abdel-Daim, M.M., Bin-Jumah, M., Hasanuzzaman, M. & Kalderis, D. (2020). Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review. Sustainability, 12, pp. 1927, DOI:10.3390/se12051927
  3. Anderson, C.W.N., Brooks, R.R., Stewart, R.B. & Simcock, R. (1998). Harvesting a crop of gold in plants. Nature, pp. 553–554. DOI:10.1038/26875
  4. Baker, A.J.M. & Brooks, R.R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry. Biorecovery, 1, pp. 81–126. DOI:10.1080/01904168109362867
  5. Bonanno, G. (2011). Trace element accumulation and distribution in the organs of Phragmites australis (common reed) and biomonitoring applications. Ecotoxicol. Environ. Saf., 74 (4), pp. 1057–1064. DOI:10.1016/j.ecoenv.2011.01.018
  6. Brooks, R.R. (1998). General introduction. In: Brooks R.R. Plants that hyperaccumulate heavy metals. CAB International. New York. USA, pp. 1-14. DOI:10.1002/9783527615919.ch4
  7. Çolak, M., Gümrükçüoğlu, M., Boysan, F. & Baysal E. (2016). Determination and mapping of cadmium accumulation in plant leaves on the highway roadside, Turkey. Arch. Environ. Prot., 42, 3, pp. 11–16. DOI:10.1515/aep-2016-0023
  8. Dahlheimer, S.R., Neal, C.R. & Fein, J.B. (2007). Potential mobilization of platinum-group elements by siderophore in surface environments. Environ. Sci. Technol., 41 (3), pp. 870-875, DOI:10.1021/es0614666
  9. Dang, P. & Li, C.A. (2021). mini-review of phytomining. Int. J. Environ. Sci. Technol. DOI:10.1007/s13762-021-03807-z
  10. Delgado-Gonzales, C.R., Madariaga-Navarrete, A., Fernandez-Cortes, J. M., Islas-Pelcastre, M., Oza, G., Iqbal, H.M.N. & Sharma, A. (2021). Advances and applications of water phytoremediation: A potential biotechnological approach for the treatment of heavy metals from contaminated water. Int. J. Environ. Res. Public Health., 18, pp. 5215. DOI:103390/ijrph18105215.
  11. Dinh T., Dobo Z., Kovacs H. (2022) Phytomining of noble metals – A review. Chemosphere, 286, 131805. https://doi.org/10.1016/j.chemosphere.2021.131805Flanagan, K., Bleken, G.T., Osterlund, H., Nordqvist, K. & Viklander, M. (2021). Contamination of urban stormwater pond sediments: A study of 259 legacy and contemporary organic substances. Environ. Sci. Technol., 55 (5), pp. 3009-3020. DOI:10.1021/ acs.est.0c07782.
  12. Fujita Corporation. Daiwa House Group. EAP technologies’ https://www.fujita.com/news-releases/120119.html
  13. Gasperi, J., Wright, S.L., Dris, R., Collard, F., Mandin, C., Guerrouache, M., Langlois, V., Kelly, F.J. & Tassin, B. (2018). Microplastics in air: Are webreathing it in? Curr Opin Environ Sci Health., 1, pp. 1-5. DOI:10.1016/j.coesh.2017.10.002
  14. Gawrońska, H. & Bakera, B. (2015). Phytoremediation of particulate matter from indoor air by Chlorophytum comosum L. plants. Air Qual. Atmos. Health., 8, pp. 265–272. DIOI:10.1007/s11869-014-0285-4
  15. Gawrońska, H., Przybysz, A., Szalacha, E., Pawlak, K., Brama, K., Miszczak, A., Stankiewicz-Kosyl, M. & Gawroński, S.W. (2018). Palatinum uptake, distribution and toxicity in Arabidopsis thaliana L. plants. Ecotoxicol. Environ. Saf., 147, pp. 982-989. DOI:10.1016/j.ecoenv.2017.09.065
  16. Gawroński, S.W., Greger, M. & Gawronska, H. (2011). Plant taxonomy and metal phytoremediation. In Ed. Sherameti I , Varma A. Soil biology vol. 30 Detoxification of heavy metals, Springier. London, pp. 91-109, DOI:10.1007/978-3-642-21408-0_5
  17. Global Database 2017 http://hyperaccumulators.smi.uq.edu.au/collection/
  18. González-Valdez, E., Alarcón, A., Ferrera-Cerrato, R., Vega-Carrillo, H.R., MaldonadoVega, M., Salas-Luévano, M.Á., Argumedo-Delira, R., (2018). Induced accumulation of Au, Ag and Cu in Brassica napus grown in a mine tailings with the inoculation of Aspergillus Niger and the application of two chemical compounds. Ecotoxicol. Environ. Saf. 154 (February), 180–186. DOI:10.1016/j. ecoenv.2018.02.055
  19. Gregoratos, T. & Martini, G. (2015). Brake wear particle emission: A review. Envarionmental Science and Pollution Research International, 22, pp. 2491-2504. DOI:10.1007/s11356-014-3696-8
  20. Harumain, Z.A., Parker, H.L., Muñoz García, A., Austin, M.J., McElroy, C.R. & Hunt, A.J. (2017). Toward financially viable phytoextraction and production of plant-based palladium catalysts. Environ Sci Technol, 51(5), pp. 2992–3000. DOI:10.1021/acs.est.6b0482
  21. Haverkamp, R.G., Marshall, A.T., Van Agterveld, D., (2007). Pick your carats: nanoparticles of gold-silver-copper alloy produced in vivo. J. Nanoparticle Res. 9 (4), 697–700. DOI:10.1007/s11051-006-9198-y
  22. Helmers, E. (1997). Pt emission rate of automobiles with catalytic converters: comparison and assessment of results from various approaches. Environ. Sci. Pollution Res., 4, pp. 100-103. DOI:10.1007/BF02986288
  23. Holnicki, P., Kałuszko, A., Nahorski, Z., Stankiewicz, K. & Trapp, W. (2017). Air quality modeling for Warsaw agglomeration. Arch. Environ. Prot., 43, 1, pp. 48–64. DOI:10.1515/aep-2017-0005
  24. Jowitt, S.M., Werner, T.T., Weng, Z. & Mudd, G.M. (2018). Recycling of the rare earth elements. Current Opinion in Green and Sustainable Chemistry, 13, pp. 1–7. DOI:10.1016/j.cogsc.2018.02.008
  25. Kim, K., Raymond, D. & Candeago, R. (2021). Selective cobalt and nickel electrodeposition for lithium-ion battery recycling through integrated electrolyte and interface control. Nat Commun, 12, pp. 6554. DOI:10.1038/s41467-021-26814-7
  26. Kończak B., Cempa M., Pierzchała Ł. & Deska M. (2021). Assessment of the ability of roadside vegetation to remove particulate matter from the urban air. Environmental Pollution, 268 (Pt B): 115465. DOI:10.1016/j.envpol.2020.115465
  27. Kowalska, J., Huszal, S., Sawicki, M., Asztemborska, M., Stryjewska, E., Szalacha, E., Golimowski, J. & Gawroński, S.W. (2004). Voltammetric Determination of platinum in plant material. Electroanalysis, 15, pp. 1266-1270. DOI:10.1002/elan.200302907
  28. Krisnayanti, B., Anderson, C., Sukartono, S., Afandi, Y., Suheri, H. & Ekawanti, A. (2016). Phytomining for artisanal gold mine tailings management. Minerals, 6, pp. 84. DOI:10.3390/min6030084
  29. Ladonin, D.V. (2017). Platinum-group elements in soils and streets dust of the Southeastern Administrative District of Moscow. Eurasian Soil Sci., 51, pp. 274-283, DOI:10.1134/S1064229318030055
  30. Liang, L., Wang, Z., & Li, J. (2019). The effect of urbanization on environmental pollution in rapidly developing urban agglomerations. Journal of cleaner production, 237, 117649.
  31. Liu, K., & Lin, B. (2019). Research on influencing factors of environmental pollution in China: A spatial econometric analysis. Journal of Cleaner Production, 206, 356-364.
  32. Liu, W.S., van der Ent, A., Erskine, P., Morel, J.L. & Echevarria, G. (2020). Spatially Resolved Localization of Lanthanum and Cerium in the Rare Earth Element Hyperaccumulator Fern Dicranopteris linearis from China., American Chemical Society, Environ. Sci. Technol., 54 (4), pp. 2287-2294. DOI:10.1021/acs.est.9b05728
  33. Łutczyk, G. (2008). Platinum and palladium as pollutants of roadside soils in Warsaw. Master Thesis. Warsaw University of Life Sciences, 59pp.
  34. Mathieu, L. (2021). From dirty oil to clean batteries. Transport & Environment, pp. 75.
  35. Matodzi, V., Legodi, M.A. & Tavengwa, N.T. (2020). Determination of Platinum group metals in dust, water, soil and sediments in the vicinity of a cement manufacturing plant. SN Appl. Sci., 2, pp. 1090. DOI:10.1007/s42452-020-2882-1
  36. McGrane S.C. (2016). Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: a review, Hydrological Sciences Journal, 61:13, 2295-2311. DOI:10.1080/02626667.2015.1128084
  37. Mesjasz-Przybyłowicz, J., Nakonieczny, M., Migula, P., Augustyniak, M., Tarnawska, M., Reimold, W.U., Koerbel, C., Przybyłowicz, W. & Głowacka, E. (2004). Uptake of cadmium, lead nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheya coddii. Acta Biologica Cracoviensia Series Botanica, 46, pp. 75–85.
  38. Mikołajczak, P., Borowiak, K. & Niedzielski, P. (2017). Phytoextraction of rare earth elements in herbaceous plant species growing close to roads. Environ Sci Pollut Res, 24, pp. 14091–14103. DOI:10.1007/s11356-017-8944-2
  39. Mleczek, P., P., Borowiak, K., Budka, A., Szostek, M. & Niedzielski, P. (2021). Possible sources of rare earth elements near different classes of road in Poland and their phytoextraction to herbaceous plant species. Environmental Research, pp. 193, 110580. DOI:10.1016/j.envres.2020.110580
  40. Moreira, H., Mench, M., Pereira, S., Garbisu, C. & Kidd, P. (2021). Phytomanagement of Metal(loid)-Contaminated Soils: Options, Efficiency and Value. Frontiers in Environmental Science, Frontiers, pp. 9. DOI:10.3389/fenvs.2021.661423
  41. Müller A., Österlund H., Marsalek J. & Viklander M. (2020). The pollution conveyed by urban runoff: A review of sources, Science of The Total Environment, 709, 136125. DOI:10.1016/j.scitotenv.2019.136125
  42. Nkrumah, P. N., Tisserand, R., Chaney, R.L., Baker, A.J.M., Morel, JL., Goudon, R., Erskine, P.D., Echevarria, G. & van der Ent, A. (2018). The firet tropical ‘metal farm’: Some perspectives from field and pot experiments. J. Geochem. Explor., 198, pp. 114-124. DOI:10.1016/j.gexplo.2018.12.003
  43. Nowak, D.J., Crane, D.E. & Stevens, J.C. (2006). Air pollution removal by urban tree and shrubs in the United States. Urban For Urban Green., 4(3-4), pp. 115-123. DOI:10.1016/j.ufug.2006.01.007
  44. Okoroafor, P. & Wiche, O. (2020). Screening of plants of different species and functional groups for phytomining of rare earth elements in soil, EGU General Assembly, pp. 4–8, EGU2020-1021. DOI:10.5194/egusphere-egu2020-1021, 2019.
  45. Pagliaro, M. & Meneguzzo, F. (2019). Lithium battery reusing and recycling: A circular economy insight. Heliyon, pp. 5, e01866.DOI:10.1016/j.heliyon.2019.e01866
  46. Rajakaruna, N. & Bohm, B.A. (2002). Serpentine and its vegetation: A preliminarystudy from Sri Lanka. J. Appl. Bot., 76, pp. 20-28.
  47. Ramos, S.J., Dinali, G.S., Oliveira, C., Martins, G.C., Moreira, C.G., Siqueira, J.O. & Guilherme, L.R.G. (2016). Rare Earth Elements in the Soil Environment. Curr. Pollution Rep., 2, pp. 28–50. DOI:10.1007/s40726-016-0026-4
  48. Reeves, R.D., Baker, A.J.M., Jaffre, T., Erskine, P.D., Echevarria, G. & van der Ent, A. (2017). A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist, 218, pp. 407–411. DOI:10.1111/nph.14907
  49. Reeves, R.D., Schwartz, C., Morel, J-L. & Edmondson, J. (2001). Distribution and metalaccumulating behavior of Thlaspi caerulescens and associated metallophytes in France. Int. J. Phytoremediation, 3, pp. 145–172. DOI:10.1080/15226510108500054
  50. Reith, F., Campbell, S.G., Ball, A.S., Pring, A. & Southam, G. (2014). Platinum in Earth surface environments. Earth-Science Reviews, 131, pp. 1-21. DOI:10.1016/j.earscirev.2014.01.003
  51. Rotkittikhun, P., Kruatrachue, M., Chaiyarat, R., Ngernsansaruay, C., Pokethitiyook, P., Paijitprapaporn, A. & Baker, A.J.M. (2006). Uptake and accumulation of lead by plants from the Bo Ngam lead mine area in Thailand. Environ. Pollut., 144, pp. 681-688. DOI:10.1016/j.envpol.2005.12.039
  52. Schafer, J. & Puchlet, H. (1998). Platinum-group-metals (PGM) emitted from automobile catalytic converters and their distribution in roadside soils. J. Geochem. Explor., 64, pp. 307-314. DOI:10.1016/S0375-6742(98)00040-5
  53. Schafer, J., Hannker, D., Eckhardt, J.D. & Stuben, D. (1998). Uptake of traffic-related heavy metals and platinum group elements (PGE) by plants. Sci. Total Environ., 215, pp. 59-67. DOI:10.1016/S0048-9697(98)00115-6
  54. Shan, X.Q., Wang, H., Zhang, S., Zhou, H., Zheng, Y., Yu, H. & Wen, B. (2003). Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma. Plant Sci., 165, pp. 1343-1353. DOI:10.1016/S0168-9452(03)00361-3
  55. Stein, RJ, Höreth, S, de Melo, J.R.F., Syllwasschy, L, Lee, G., Garbin, M.L., Clemens, S. & Krämer, U. (2017). Relationships between soil and leaf mineral composition are element-specific, environment-dependent and geographically structured in the emerging model Arabidopsis halleri. New Phytologist, 213, pp. 1274–1286. DOI:10.1111/nph.14219
  56. Sun J., Yu J., Ma Q., Meng F., Wei X.,Sun Y., Tsubaki N. 2018. Freezing copper as a noble meta-like catalyst for preliminary hydrogenation. Science Advances 4: eaau3275.
  57. Sun, F.B., Yin, Z., Lun, X.X., Zhao, Y., Li, R. N., Shi, F.T. & Yu, X. (2014). Decomposition velocity of PM 2,5 in the winter and spring above coniferous forests in Beijing. China. PLoS one 9/5. DOI:10.1371/journal.pone.0097723.
  58. Sun, X., Luo, XS. & Xu, J. (2019) Spatio-temporal variations and factors of a provincial PM2.5 pollution in eastern China during 2013–2017 by geostatistics. Sci Rep 9, 3613. DOI:10.1038/s41598-019-40426-8
  59. Van der Ent, A., Echevarria, G., Baker, A.J.M. & Morel, J.L. (2018). Agromining: Farming for metals. Springer. DOI:10.1007/978-3-319-61899-9
  60. Yan, A., Wang, Y., Tan, S.N., Yusof, M.L.M., Ghosh, S. & Chen, Z. (2020). Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Frontiers in Plant Science, 2020. 11, article 359. DOI:10.3389/fpls.2020.00359
  61. Yu H., Ma J., Chen F., Zhang Q., Wang Y. & Bian Z. (2022). Effective remediation of electronic waste contaminated soil by the combination of metal immobilization and phytoremediation, Journal of Environmental Chemical Engineering, 2022, 107410. DOI:10.1016/j.jece.2022.107410
  62. Wilson-Corral, V., Anderson, C., Rodriguez-Lopez, M., Arenas-Vargas, M., LopezPerez, J., (2011). Phytoextraction of gold and copper from mine tailings with Helianthus annuus L. and Kalanchoe serrata L. Miner. Eng. 24 (13), 1488–1494. DOI:10.1016/j.mineng.2011.07.014
  63. Zereini, F., Wiseman, C.L.S.,Vang, M., Alberts, P., Schneider, W., Schindl, R. & Leopold, K. (2016). Geochemical behavior of palladium in soils and Pd/PdO model substances in presences of the organic complexing agents L-methionine and citric acid. Microb. Biotechnol., 18 (1), pp. 22-31. DOI:10.1039/c5em00521c
Go to article

Authors and Affiliations

Stanisław Gawroński
1
Grzegorz Łutczyk
2
Wiesław Szulc
1
ORCID: ORCID
Beata Rutkowska
1
ORCID: ORCID

  1. Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Poland
  2. Generalna Dyrekcja Dróg Krajowych i Autostrad, Poland

This page uses 'cookies'. Learn more