Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to indicate the procedure of using laboratory physical model tests of scour around bridge piers for the purposes of determining the potential scour of a riverbed on field bridge crossings. The determination of the uniform modeling scale coefficient according to the criterion of reliable sediment diameter limits the application of the results of tests on physical models to selected types of sediment. The projected depths of scouring of the riverbed at the pier in nature were determined for an object reproduced in the scale of 1:15 determined from the relationship of flow resistance, expressed by hydraulic losses described by the Chézy velocity coefficient, the value of which, in the model and in nature, should be the same. Expressing the value of the Chézy velocity coefficient with the Manning roughness coefficient and introducing the Strickler parameter, it was shown that the coarse sand used in the laboratory bed models the flow resistance corresponding to the resistance generated by gravel in nature. The verification of the calculated size of scouring was based on popular formulas from Russian literature by Begam and Volčenkov [16], Laursen and Toch’s [20] from the English, and use in Poland according to the Regulation ... (Journal of Laws of 2000, No. 63, item 735) [32].
Go to article

Bibliography


[1] A. A. ven Te Chow, ”Open-Bed Hydraulics,” New York: McGraw-Hill Book Company, 1959.
[2] A. Duchaczek, D. Skorupka, “Evaluation of Probability of Bridge Damage as a Result of Terrorist Attack,” Archives of Civil Engineering, vol. 2, pp. 215–227, Jun. 2013. https://doi.org/10.2478/Ace-2013-0011
[3] A. Radecki-Pawlik, P. A. Carling, E. Słowik-Opoka, R. Breakspeare, “On sand-gravel bed forms investigation within the mountainous river,” Infrastruktura i Ekologia Terenów Wiejskich, vol. 3, pp. 119–134, 2005.
[4] A. Szuster, B. Utrysko, ”Hydraulika i podstawy hydromechaniki,” Warszawa: Wydawnictwo Politechniki Warszawskiej, 1986.
[5] B. Hodi, “Effect of Blockage and Densimetric Froude Number on Circular Bridge Pier Local Scour,” in Electronic Theses and Dissertations, vol 79, Windsor, Ontario, Canada, 2009.
[6] B. Liang, S. Du, X. Pan, L. Zhang, “Local Scour for Vertical Piles in Steady Currents: Review of Mechanisms, Influencing Factors and Empirical Equations,” Journal Marine Science Engineering, vol. 8, pp. 4–27, Dec. 2020. https://doi.org/10.3390/jmse8010004
[7] B. Melville, “The Physics of Local Scour at Bridge Pier,” in Fourth International Conference on Scour and Erosion, Civil and Environmental Engineering, The University of Auckland, Auckland, vol. K-2, pp. 28–40, 2008.
[8] B. Utrysko, S. Bajkowski, L. Sz. Dąbkowski, „Światła mostów i przepustów. Zasady obliczeń z komentarzem i przykładami,” Wrocław – Żmigród: Instytut Badawczy Dróg i Mostów, Poland, 2000.
[9] D. Panici, G. A. M. De Almeida, “Formation, growth, and failure of debris jams at bridge piers,” Water Resources Research, vol. 54, pp. 6226–6241, Aug. 2018. https://doi.org/10.1029/2017WR022177
[10] D. Poggi, N. O. Kudryavtseva, „Non-Intrusive Underwater Measurement of Local Scour Around a Bridge Pier,” Water, vol. 11, pp. 2063–2074, Oct. 2019. https://doi.org/10.3390/w11102063
[11] G. J. C. M. Hoffmans, H. J. Verheij, “Scour Manual,” Rotterdam: A. A. Balkema, 1997.
[12] H. D. Copp, J. P. Johnson, “Riverbed Scour at Bridge Pier,” Final Report WA-RD 118.1. Washington State Department of Transportation, Technical Report Standard Title Page, Washington State Department of Transportation. Planning. Research and Public Transportation Division in cooperation with the United States Department of Transportation, Pullman: Federal Highway Administration, 1987.
[13] H. D. Copp, J. P. Johnson, J. L. Mcintosh, “Prediction methods for local scour at intermediate bridge piers,” Transportation Research Record, vol. 1201, pp. 46–53, 1988.
[14] H. N. C. Breusers, A. J. Raudkivi, “Scouring. Hydraulic Design Considerations. Hydraulic Structures Design Manual,” London & New York: Association For Hydraulic Research Association 2. Taylor & Francis Group, 1991.
[15] J. Schalko, C. Lageder, V. Schmocker, V. Weitbrecht, R. M. Boes, “Laboratory Flume Experiments on the Formation of Spanwise Large Wood Accumulations: Part II–Effect on local scour,” Water Resources Research, vol. 55, pp. 4871–4885, May 2019. https://doi.org/10.1029/2019WR024789
[16] L. G. Begam, G. Volčenkov, “Vodopropusknaâ sposobnost’ mostov i trub,” Moskva: Transport, 1973.
[17] L. Sz. Dąbkowski, J. Skibiński, A. Żbikowski, „Hydrauliczne podstawy projektów wodnomelioracyjnych,” Warsaw: Państwowe Wydawnictwo Rolnicze i Leśne, 1982.
[18] M. Kiraga, “Local scour modelling on the basis of flume experiments,” Acta Scientiarum Polonorum Architectura, vol. 18, no. 4, pp. 15–26, Mar. 2019. https://doi.org:10.22630/ASPA.2019.18.4.41
[19] M. Kiraga, J. Urbański, S. Bajkowski, ”Adaptation of Selected Formulas for Local Scour Maximum Depth at Bridge Piers Region in Laboratory Conditions,” Water, vol. 12, pp. 2663–2682, Sept. 2020. https://doi.org/10.3390/w12102663
[20] M. Laursen,. A. Toch, ”Scour around piers and abutments,” Bulletin 4, Iowa: Iowa Highway Research Board, USA, 1956.
[21] M. R. Namaee, J. Sui, “Impact of armour layer on the depth of scour hole around side-by-side bridge piers under ice-covered flow condition,” Journal of Hydrology and Hydromechanics, vol. 67, no. 3, pp. 240–251, Jul. 2019. https://doi.org/10.2478/johh-2019-0010-240
[22] M. S. Fael, G. Simarro-Grande, J. P. Martı´n-Vide, A. H. Cardoso, “Local scour at vertical-wall abutments under clear-water flow conditions,” Water Resources Research, vol. 42, pp. 10408–10428, Oct. 2006. https://doi.org/10.1029/2005WR004443
[23] M. van Der Wal, G. Van Driel, H. J. Verheij, “Scour manual. Desk study”. Delft Hydraulics: Rijkswaterstaat, 1991.
[24] N. A. Obied, S. I. Khassaf, “Experimental Study for Protection of Piers Against Local Scour Using Slots,” International Journal of Engineering, vol. 32, no. 2, pp. 217–222, Mar. 2019. https://doi.org/10.5829/ije.2019.32.02b.05
[25] N. S. Cheng, M. Wei, “Scaling of Scour Depth at Bridge Pier Based on Characteristic Dimension of Large-Scale Vortex,” Water, vol. 11, pp. 2458–2466, Nov. 2019. https://doi.org/10.3390/w11122458
[26] O. Link, “Physical scale modeling of scour around bridge piers,” Journal of Hydraulic Research, vol. 57, no. 2, pp. 227–237, Jul. 2019. https://doi.org/10.1080/00221686.2018.1475428
[27] PN-B-02481: 1998 Geotechnika. Terminologia podstawowa, symbole literowe i jednostki miar. Polski Komitet Normalizacji, Miar i Jakości, Poland, 1998.
[28] PN-EN ISO 14688-1: 2006 Badania geotechniczne. Oznaczanie i klasyfikowanie gruntów. Część 1: Oznaczanie i opis. Polski Komitet Normalizacyjny, Poland, 2006.
[29] PN-EN ISO 14688-2: 2006 Badania geotechniczne. Oznaczanie i klasyfikowanie gruntów Część 2: Zasady klasyfikowania. Polski Komitet Normalizacyjny, Poland, 2006.
[30] R. Chavan, P. Gualtieri, B. Kumar, “Turbulent flow structures and scour hole characteristics around circular bridge piers over non-uniform sand bed beds with downward seepage,” Water, vol. 11, no. 8, pp. 1580–1597, Jul. 2019. https://doi.org/10.3390/w11081580
[31] R. W. P. May, J. C. Ackers A. M. Kirby, “Manual on scour at bridges and other hydraulic structures”. London: CIRIA C551, UK, 2020.
[32] Rozporządzenie z dnia 30 maja 2000 r. Ministra Transportu i Gospodarki Morskiej z dnia 30 maja 2000 roku w sprawie warunków technicznych, jakim powinny odpowiadać drogowe obiekty inżynierskie i ich usytuowanie (Dz.U. 2000 nr 63 poz. 735). Regulation... (Journal of Laws 2000 No. 63 item 735).
[33] S. Bajkowski, “Effect of the Siekierka bridge on the flood flow on Zwoleńka river,” Wiadomości Melioracyjne i Łąkarskie, vol. 58, no. 1, pp. 23–29, 2015.
[34] S. Oh Lee, S. Ho Hong, “Turbulence Characteristics before and after Scour Upstream of a Scaled-Down Bridge Pier Model,” Water, vol. 11, pp. 1900–1914, Sept. 2019. https://doi.org/:10.3390/w11091900
[35] S. Bajkowski, “Bed load transport through road culverts,” Scientific Review Engineering and Environmental Sciences, vol. 2, no. 40, pp. 127–135, 2008.
[36] J. Urbański, “Influence of turbulence of flow on sizes local scour on weir model,” Acta Scientiarum Polonorum Architectura, vol. 7, no. 2, pp. 3–12, 2008.
[37] W.-G. Qi, F.-P. Gao, “Physical modeling of local scour development around a large-diameter monopile in combined waves and current,” Coastal Engineering, vol. 83, pp. 72–81, Jan. 2014. https://doi.org/10.1016/j.coastaleng.2013.10.007
[38] W. Majewski, ”Hydrauliczne badania modelowe inżynierii wodnej,” Seria publikacji naukowo-badawczych IMGW-PIB, Instytut Meteorologii i Gospodarki Wodnej Państwowy Instytut Badawczy, Poland, 2019.
Go to article

Authors and Affiliations

Sławomir Bajkowski
1
ORCID: ORCID
Marta Kiraga
1
ORCID: ORCID
Janusz Urbański
1
ORCID: ORCID

  1. Warsaw University of Life Sciences WULS-SGGW, Institute of Civil Engineering, ul. Nowoursynowska 159, 02-787 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Concrete hollow thin-walled high piers (CHTWHPs) located in mountainous areas may be destroyed by the huge impact force of accidental rocks. The study focuses on analyzing the effects of rock impact on the pier, including its impact force, pier damage, dynamic response, and energy dissipation characteristics. The results show that: (1) Increasing the impact height led to a decrease in the peak impact force. Specifically, 15.5% decrease in the peak collision force is induced when the height of rock collision rises from 10 m to 40 m. (2) The damage mode of the pier’s collision surface is mainly oval damage with symmetrical center, radial damage on the side surface, and corner shear failure on the cross section. (3) The peak displacement of bridge pier increases with the increase of collision height. As the collision height increased from 10 m to 40 m, the bridge pier’s peak displacement also increased, rising by 104.2%. (4) The concrete internal energy gradually decreased with increasing collision height, dropping by 36.9% when the height of rock collision rises from 10 m to 40 m. The reinforcement internal energy showed an increase of 78%. The results of this study may provide reference for the rock collision resistance design of CHTWHPs.
Go to article

Authors and Affiliations

Yao. Huang
1
ORCID: ORCID

  1. Nanning College of Technology, Guangxi, 541006, China
Download PDF Download RIS Download Bibtex

Abstract

Bridges built across a river bend and supported by more than one pier has been experimentally studied regarding the shape and nature of erosion and deposition. For this purpose, a U-shaped laboratory channel was used with two oblong piers installed at different locations. The first one was at the mid-section of the upstream straight reach, whereas in the second site within the bend, the piers have been installed at sections of central angles 0°, 30°, 60°, 90°, 120°, 150°, 170°, and 180°, from the beginning to the end of the bend segment respectively. The studies were conducted under clear water and threshold flow conditions. The results show that the higher and lower values of local scour around the pier positioned close to the outer bank, are 1.803 and 0.623 times the pier width when the bridge was installed at an angle of 90° and 30° respectively. As for the pier close to the inner bank, the deepest local scour was 1.786 times of the pier width when the bridge was installed at 60° of the bend, while the least one was 0.516 times of the pier width when the bridge was located in the 180° sector. It is worth noting that the presence of piers within sector 150 is less affected by local scour than in the other sections.
Go to article

Authors and Affiliations

Abdulrazaq K. Abdulwahd
1
ORCID: ORCID
Jaafar S. Maatooq
1
ORCID: ORCID

  1. University of Technology, Civil Engineering Department, Al-sina’a St, P.O Box 19006, Baghdad, Iraq
Download PDF Download RIS Download Bibtex

Abstract

Although the complexities and irrevocable consequences associated with bridge scour have attracted researchers interest, their studies scarcely indicated the effect of a bridge pier proximity to an abutment. This research aims to measure maximum scour depth and exhibit the impact of pier-abutment scour interference based on laboratory experiments where vertical-wall abutment and two shapes of a pier (oblong and lenticular) were used at three different spacings (23.5, 16.0, 9.0 cm). The results showed an obvious increase in the scour depth ratio when increasing flow intensity, Froude number, and a decreasing flow depth. They also showed that reduced pier-abutment spacing was accompanied by increase in pier scour for both shapes while decrease in abutment scour. The maximum scour depth that caused by an oblong shape was more than a lenticular shape by about 10.8%. Furthermore, new empirical equations were derived using IBM SPSS Statistics 21 with determination coefficients of 0.969, 0.974, and 0.978 for oblong, lenticular and abutment, respectively. They showed the correlation between predicted and observed data.
Go to article

Authors and Affiliations

Noor A.A. Muhsen
1
ORCID: ORCID
Saleh I. Khassaf
1
ORCID: ORCID

  1. University of Basrah, College of Engineering, Department of Civil Engineering, Center of Basrah, PO Box 49, Al Basrah, Iraq
Download PDF Download RIS Download Bibtex

Abstract

A quantitative study is performed to determine the performance degradation of Y-shaped reinforced concrete bridge piers owing to long-term freeze-thaw damage. The piers are discretized into spatial solid elements using the ANSYS Workbench finite element analysis software, and a spatial model is established. The analysis addresses the mechanical performance of the piers under monotonic loading, and their seismic performance under low-cycle repeated loading. The influence of the number of freeze-thaw cycles, axial compression ratio, and loading direction on the pier bearing capacity index and seismic performance index is investigated. The results show that freeze-thaw damage has an adverse effect on the ultimate bearing capacity and seismic performance of Y-shaped bridge piers in the transverse and longitudinal directions. The pier peak load and displacement ductility coefficient decrease with increasing number of freeze-thaw cycles. The axial compression ratio is an important factor that affects the pier ultimate bearing capacity and seismic performance. Upon increasing the axial compression ratio, the pier peak load increases and the displacement ductility coefficient decreases, the effects of which are more significant in the longitudinal direction.
Go to article

Authors and Affiliations

Yanfeng Li
1
ORCID: ORCID
Jialong Li
1
Tianyu Guo
1
ORCID: ORCID
Tongfeng Zhao
2
Longsheng Bao
3
ORCID: ORCID
Xinglong Sun
1

  1. School of Transportation and Geomatics Engineering, Shenyang Jianzhu University, Shenyang 110168, China
  2. Liaoning Provincial College of Communications, Liaoning Bridge Safety Engineering Research Center, Shenyang 110168, China
  3. School of Transportation Engineering, Shenyang Jianzhu University, Shenyang 110168, China
Download PDF Download RIS Download Bibtex

Abstract

Under eccentric load, a single column pier bridge often overturns. In order to study the anti overturning performance of a single column pier bridge, taking the accident bridge in Wuxi as an example, a finite element model is established based on ABAQUS. According to the model simulation results, the relationship between the ultimate rotational load and overturning load of the accident bridge is obtained, and the ratio of the latter to the former is 1.75. Based on the model, the stress state, displacement state, and support state of the accident bridge under dead load, highway class I vehicle load, and accident vehicle load are obtained. Whether the strength and stability of the accident bridge under each load meet the service requirements is analyzed. In order to explore the differences among China, United States, and Japan specifications, the lateral stability of accident bridges is checked. It is found that the safety of the United States and Japan specifications is conservative, but the utilization rate of bridge traffic capacity is low. The safety of China specifications is slightly lower, but it can maximize the bridge’s traffic capacity and judge the ultimate overturning state of the bridge more accurately. The research results can provide technical references for the design and application of a single-column pier bridge.
Go to article

Authors and Affiliations

Yongcheng Ji
1
ORCID: ORCID
Wenchao Liu
1
ORCID: ORCID
Wei Li
1
ORCID: ORCID
Pixiang Wang
2
ORCID: ORCID

  1. Northeast Forestry University, School of Civil Engineering, Al. Harbin City, Heilongjiang Province, China
  2. Guangdong University of Technology, School of Civil Engineering, Al. Guangzhou, Guangdong Province, China

This page uses 'cookies'. Learn more