Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 35
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to develop a method of laparoscopic embryo transfer in pigs and to compare different variants of this method. Two catheter diameters (1.6 mm and 1.0 mm), the method and site of embryo deposition (oviduct or uterus), the embryo development stage (2 – 4 cell or blastocyst), the method for oviduct or uterus stabilization, the potential for cryopreserved embryo transfer, the developmental potential of the embryos after transfer to the oviduct, patomorphology of the oviduct after transfer and possible clinical complications were taken into consideration. Two studies compared two variants of transfer to the uterus, and five variants of transfer to the fallopian tube. The transfer of embryos by the infundibulum may be of limited use due to handling problems and very low efficiency (pregnancy was not achieved). Very low efficiency was shown after transfer of vitrified embryos. Transfer to the fallopian tube by puncture of the fallopian tube, regardless of the developmental stage of the embryo, is the recommended method of embryo transfer. The histopathological examination of the fallopian tube revealed possible changes within the puncture site. The numerous clinical complications observed did not affect the effectiveness of the method.
Go to article

Authors and Affiliations

J. Wieczorek
1
E. Stodolak-Zych
2
ORCID: ORCID
K. Okoń
3
J. Koseniuk
4
M. Bryła
5
J. Jura
5
K. Poniedziałek-Kempny
5
I. Rajska
5
K. Sobol
5
M. Kotula Balak
1
M. Chmurska-Gasowska
1

  1. University Centre of Veterinary Medicine, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
  2. Department of Biomaterials, Faculty of Materials Science and Ceramics, University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
  3. Chair of Pathomorphology, Collegium Medicum, Jagiellonian University, Grzegorzecka 16, 30-526 Krakow, Poland
  4. Artvimed Centre for Reproductive Medicine, Czyzowka 14, 30-526 Krakow, Poland
  5. Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1, 30-322 Balice/Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Copper slag is a by-product obtained during smelting and refining of copper. Copper smelting slag typically contains about 1 wt.% copper and 40 wt.% iron depending upon the initial ore quality and the furnace type. Main components of copper slag are iron oxide and silica. These exist in copper slag mainly in the form of fayalite (2FeO ·SiO2). This study was intended to recover pig iron from the copper smelting slag by reduction smelting method. At the reaction temperature of below 1400°С the whole copper smelting slag was not smelted, and some agglomerated, showing a mass in a sponge form. The recovery behavior of pig iron from copper smelting slag increases with increasing smelting temperature and duration. The recovery rate of pig iron varied greatly depending on the reaction temperature.

Go to article

Authors and Affiliations

U. Erdenebold
H.-M. Choi
J.-P. Wang
Download PDF Download RIS Download Bibtex

Abstract

Colistin is being used as a last-resort drug to treat infections caused by multidrug-resistant (MDR) bacteria in humans. In veterinary medicine, colistin has been used for the treatment and prevention of infectious diseases. In the first study of mcr genes by multiplex PCR in healthy pigs from Serbia, we discovered mcr-1 in 4.85% out of 350 fecal samples. The presence of mcr-1 gene was detected on three farms located less than 100 km apart from each other, predominantly in piglet samples. The results point to the necessity of monitoring of colistin resistance and the mcr genes in food producing animals as well as restricting colistin usage on farms.
Go to article

Authors and Affiliations

G. Kozoderović
1
V. Lalošević
2
T. Süli
3
V. Vračar
2

  1. University of Novi Sad, Faculty of Education in Sombor, Podgorička 4, 25000 Sombor, Republic of Serbia
  2. University of Novi Sad, Faculty of Agriculture, Department of Veterinary Medicine, Trg Dositeja Obradovića 8, 21000 Novi Sad, Republic of Serbia
  3. Veterinarski zavod Subotica, Beogradski put 123, 24000 Subotica, Serbia
Download PDF Download RIS Download Bibtex

Abstract

We consider the manure removal system, which is used in most pig farms being built and reconstructed at present in Ukraine, and it has been discovered that there are major mistakes during the baths construction in the correct geometry and depth, and therefore discusses their rules of operation. If the baths geometry is wrongly executed, for instance, if the slope is made to slant toward the bottom of the tub filler drain pipe, which in itself is unacceptable, or not properly executed in the form of a special pit steps towards the neck drain, and etc., then a number of problems is inherent of its exploitation. The basic requirements for laying fused-pipe is compliance with its slope. The considered equipment must be equipped with pumping stations to pump manure. The pumps for pumping manure: submersible sewage pumps and dry-installed in the mine and long sewage pumps with electric or PTO shaft of a tractor were analyzed. Attention was paid to the designing of modern equipment for the distribution of manure waste into fractions. The classification of manure storage and the basic requirements for their placement and arrangement was carried out, and recommendations are made for the designing of pumping stations, to select pumps for the pumping stations and the design during the modern construction and reconstruction of old pig farms.
Go to article

Authors and Affiliations

O. Boltianskyi
B. Boltianskyi
N. Boltyanska
S. Sosnowski
Download PDF Download RIS Download Bibtex

Abstract

Culture gas atmosphere is one of the most important factors affecting embryo development in vitro. The main objective of this study was to compare the effects of CO concentration on the subsequent pre-implantation developmental capacity of pig embryos in vitro, including embryos obtained via parthenogenesis, in vitro fertilization (IVF), and intracytoplasmic sperm injection (ICSI). Pig embryos were developed in four different CO2 concentrations in air: 3%, 5%, 10%, or 15%. The cleavage rate of pig parthenogenetic, IVF, or ICSI embryos developed in CO2 concen- trations under 5% was the highest. There were no significant differences in the oocyte cleavage rate in ICSI embryos in CO2 concentrations under 3% and 5% (p>0.05). However, as CO2 levels increased (up to 15%) the blastocyst output on day 7, from parthenogenetic, IVF, and ICSI em- bryos, decreased to 0%. These findings demonstrate that CO2 positively affects the developmen- tal capacity of pig embryos. However, high or low CO2 levels do not significantly improve the developmental capacity of pig embryos. The best results were obtained for all of the pig embryos at a 5% CO2 concentration.

Go to article

Authors and Affiliations

L. Zhang
Z. Lin
Y. Bi
X. Zheng
H. Xiao
Z. Hua
Download PDF Download RIS Download Bibtex

Abstract

Heterogeneous nuclear ribonucleoprotein K (hnRNP K), is a multifunctional protein that participates in a variety of regulatory processes of signal transduction and gene expression. To further characterize the significance of hnRNP K in different male germ cells, we investigated the expression profiles of hnRNP K at different developmental stages in pig and rat testes, and conducted a comparative analysis of expression patterns between these two species. In porcine testis development, both the mRNA and protein level of hnRNP K were down-regulated from 3 months to 8 months. However, the expression level of hnRNP K was abundant across the embryonic period in rats, and decreased gradually from 0 day post partum (dpp) to 14 dpp, then increased with the highest level presenting at 90 dpp. Immunolocalization analysis further confirmed the differential expression and localization of hnRNP K protein during testis development in pigs and rats. The results showed that hnRNP K was widely distributed in gonocytes, spermatogonia, sertoli cells and Leydig cells. The dynamic expression profile of hnRNP K may imply its crucial and potential roles in the development of the testis, which will provide a theoretical basis for the future study of molecular mechanism regulation of spermatogenesis.
Go to article

Authors and Affiliations

H. Xu
P. Zhang
R. Li
W. Wu
S. Wang
Y. Xu
Download PDF Download RIS Download Bibtex

Abstract

The article reviews selected systems and technological variants of biogas production. Biogas installations and methods of biogas production were characterized in terms of control and measurement. The required technical and technological criteria for biogas production and treatment were indicated. The conditions of biorefining in the context of the generation of new products were analysed. Based on the amount of manure produced in pig production, the potential of biogas production in Poland was indicated based on the visualization of the biogas production potential by poviats in Poland. The substrate in the form of slurry, manure and other agricultural waste for the production of agricultural biogas in Poland was analysed quantitatively. The economic aspects in the agricultural biogas plant sector were revealed, indicating the operation of the economies of scale for this industry sector.
An example of a pilot biogas production for anaerobic digestion using pig slurry is presented. The paper presents pre-liminary results of experimental studies on the course of changes in the biogas volume flow for the average daily production of agricultural biogas and the qualitative composition of agricultural biogas produced from pig slurry. The results of the measurements show a clear influence of the hydrodynamic mixing system of the substrate for the evaluation of the biogas flow through the adhesive bed in the context of agricultural biogas production in the range (1–14) m3 d–1.
Go to article

Authors and Affiliations

Grzegorz Wałowski
1
ORCID: ORCID

  1. Institute of Technology and Life Sciences, Falenty, Department of Renewable Energy, Poznań Branch, ul. Biskupińska 67, 60-463 Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

This study analysed the influence of montelukast (MON; 10-8 - 10-4 M), a cysteinyl leukotriene receptor 1 (CysLTR1) antagonist, on the contractility of the porcine uterine smooth muscle in the luteal phase of the oesterous cycle (n=8) and in early pregnancy (n=8). Stimulation of uterine strips in the luteal phase with MON has been shown to significantly reduce the amplitude of con- tractions, but not to affect the tension or frequency of contractions. A statistically significant tension increase and decrease in the frequency and amplitude of contractions was observed in pigs in early pregnancy. This suggests that MON has a different effect on the parameters under study in cyclic and pregnant pigs.

Go to article

Authors and Affiliations

W. Markiewicz
A. Wiśniewska
H. Madej-Śmiechowska
A. Burmańczuk
J.J. Jaroszewski
Download PDF Download RIS Download Bibtex

Abstract

The etiology of Postpartum dysgalactia syndrome (PDS) includes stress οn preparturition and constipation associated with low water intake or low fiber intake. The aim of this study was to investigate the effects of a raw crude fibre concentrate (Arbocel®) on sow’s metabolism and performance.
100 sows from a farm suffering from PDS, were divided into two groups, with equal distribu- tion of their parity (1 to 5 parity): a) T1 group (control group): 50 sows were fed with regular gestation feed (GF), pre-farrowing feed (PFF), and lactation feed (LF), b) T2 group: 50 sows were fed with regular GF, PFF and LF supplemented with topdress Arbocel® from 104th day of gestation until 7th day of lactation). Health parameters [faeces score (FS), PDS score (PDSS), body condition score (BCS)], performance parameters and liter characteristics were recorded. Blood samples were collected from 25 sows / group (5 sows per parity) 24 h after birth of last piglet and on 14th day of lactation for the evaluation of insulin, leptin and ghrelin levels in the serum, using commercial ELISA kits.
In T2 group, BCS at farrowing (p<0.001), FS (p=0.001) and PDSS (p=0.003) were improved significantly. The number of piglets stillborn and dead due to crushing decreased (p=0.001), while the number of liveborn (p=0.016) and weaned piglets (p=0.001) increased in T2 group. Moreover, in T2 group, the BW of piglets at weaning was higher (p<0.001). A significant increase of insulin (p=0.032) and leptin (p=0.032) levels in serum was noticed in T2 group 24 h after farrowing. In conclusion, the supplementation of extra crude fibre in breeding stock with PDS problems due to nutritional imbalance has beneficial effects on their health and performance.
Go to article

Authors and Affiliations

V.G. Papatsiros
1
M.-S. Katsarou
2
N. Drakoulis
2
G. Maragkakis
1
E. Tzika
3
D. Maes
4
P.D. Tassis
3
M. Lagiou
5
G. Christodoulopoulos
1

  1. Clinic of Medicine, Faculty of Veterinary Medicine, School of Health Sciences, University of Thessaly, Trikalon 224, Karditsa, 43100, Greece
  2. Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens,Athens, Panepistimiopolis of Zographou, 15771, Greece
  3. Farm Animal Clinic, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 11 St. Voutyra str., 546 27 Thessaloniki, Greece
  4. Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan, 133 Entrance 4, B-9820 Merelbeke, Belgium
  5. Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Panepistimiopolis of Zographou, 15771, Greece
Download PDF Download RIS Download Bibtex

Abstract

From the regulatory point of view a strong link between an animal model and human pharmacodynamics of biological drugs is very important to qualify the model as “relevant”. Consistent changes in cell population between human physiology and animal model gain value of this model which then can be pharmacodynamically “relevant” from the regulatory point of view. Consequently, the aim of this study was to determine how similar to human observations is the effect of selected biological drugs on blood cells in a pig model. The study was to carry out a comparative analysis of the variability of selected biochemical and hematological parameters of the blood after administration of five different human therapeutic monoclonal antibodies (mAbs) after a single subcutaneous (SC) dose in breeding pigs. The tested drugs were siltuximab (Syl- vant®), omalizumab (Xolair®), infliximab (Inflectra®), pembrolizumab (Keytruda®), and vedoli- zumab (Entyvio®) given in a single 1 mg/kg SC injection. Each of the tested drugs exerted a sig- nificant effect on at least two of the tested parameters three weeks after the administration. Siltuximab significantly influenced 9 of the analyzed parameters. Vedolizumab significantly influenced 8 of the analyzed parameters. Infliximab had the lowest impact of all the tested drugs, as it significantly influenced only two of the analyzed parameters. The study has proved that the impact of mAbs on the analyzed parameters can be significantly extended over time. This requires the monitoring of hematological parameters in the pig model even many weeks af- ter administration of a drug in a relatively small dose.

Go to article

Authors and Affiliations

T. Grabowski
A. Burmańczuk
A. Miazek
Download PDF Download RIS Download Bibtex

Abstract

Copper slag is usually a mixture of iron oxide and silicon dioxide, which exist in the form of fayalite (2FeO·SiO2), and contains ceramic components as the SiO2, Al2O3 and CaO depending on the initial ore quality and the furnace type. Our present study was focused on manufacture of foundry pig iron with Cu content from copper slag using high-temperature reduction smelting and investigate utilization of by-products as a reformed slag, which is giving additional value to the recycling in a replacement of raw material of Portland cement. Changes of the chemical and mineralogical composition of the reformed slag are highly dependent on the CaO concentration in the slag. The chemical and mineralogical properties and microstructural analysis of the reformed slag samples were determined through X-ray Fluorescence spectroscopy, X-Ray diffractometer and Scanning Electron Microscopy connected to the dispersive spectrometer studies.
Go to article

Bibliography

[1] LS-Nikko copper inc., Private Communication. 2012 Ulsan, Korea.
[2] Korea Zinc Co., Ltd., Onsan Refinery, Private Communication. 2012 Ulsan, Korea.
[3] S .W. Ji, C.H. Seo, J. of Korean Inst. of Resources Institute. 2, 68-72 (2006).
[4] J.P. Wang, K.M. Hwang, H.M. Choi. Indian J. Appl. Res. 2, 977-982 (2018).
[5] J.P. Wang, K.M. Hwang, H.M. Choi. Indian J. Appl. Res. 2, 973-976 (2018).
[6] A.A. Lykasov, G.M. Ryss, Steel Trans. 46 (9), 609-613 (2016).
[7] M.K. Dash, S.K. Patro and etc., Int. J. Sustain. Built. Environ. 5, 484-516 (2016).
[8] B. Gorai, R.K. Jana and etc., Resour. Converv. Recy. 39, 299-313 (2003).
[9] I . Alp, H. Deveci, H. Sungun. J. Hzard. Mater. 159, 390-395 (2008).
[10] P. Sarfo, G. Wyss and etc., J. Min. Eng. 107, 8-19 (2017).
[11] U. Yuksel, I. Tegin. J. Environ. Sci. Eng. Eng. Technol. 6, 388-394 (2017).
[12] Z.X. Lin, Z.D. Qing and etc. ISI J Int. 55, 1347-1352 (2015).
[13] Z. Guo, D. Zhu and etc., J. Met. 86 (6), 1-17 (2016).
[14] A.A. Lykasov, G.M. Ryss and etc., Steel Transl. 46 (9), 609-613 (2016).
[15] Z. Cao, T. Sun and etc., Minerals. 6 (119), 1-11 (2016).
[16] A.Es. Nassef. A. Abo Ei-Nasr, Influence of Copper Additions and Cooling Rate on Mechanical and Tribological Behavior of Grey Cast Iron, 7th Int. Saudi Engineering Conference (SEC7), KSA, Riyadh 2-5, 2-5 Dec 2007, p. 307
[17] G . Gumienny, B. Kacprzyk, Arch. Foundry Eng. 17, 51-56 (2017).
[18] Z. Slovic, K.T. Raic, L. Nedeljkovic, etc., Mater. Technol. 46 (6), 683-688 (2012).
[19] U. Erdenebold, H.M. Choi. J.P. Wang. Arch. Metal. Mater. 63 (4), 1793-1798 (2018).
[20] Ye.A. Kazachkov, Calculations on the theories of metallurgical processes. Metallurgy, Moscow (1988).
[21] G .I. Silman, V.V. Kamynin and etc., Met. Sci. Heat. Treat. 45 (2003), 254-258.
[22] A.A. Razumakov, N.V. Stepanova and etc., Proceedings of MEACS2015. IOP conference series: materials science and engineering, Tomsk Polytechnic University, Tomsk, 1-4 December 2015, 124, 012136 (2016).
[23] E. Konca, K. Tur and etc., Metals 7 (320), 1-9 (2017).
[24] J.O. Agunsoye, S.A. Bello and etc., J. Miner. Mater. Character. Eng. 2, 470-483 (2014).
[25] A.A. Rahman, S.A. Abo-El-Enein and etc., Arab. J. Chem. 9, 8138-8143 (2016).
[26] D .E. Angulo-Ramirez, R.M. de Gutierrez and etc., Constr. Build. Mater. 140, 119-128 (2017).
[27] Y. Maeda. Nippo steel and Sumitomo metal technical report. 109, 114-118 (2015).
[28] Y. Ueki. Nippo steel and Sumitomo metal technical report. 109, 109-113 (2015).
[29] https://www.snmnews.com/news/articleView.html?idxno= 447525, accessed: 05.06.2019.
[30] M. Fleischer. Geological survey professional paper 440-L, 6th edition. Washington, 1964, p. 21-23.
[31] V erlag Stahleisen GmbH. Slag atlas. 2nd edition, Germany, 1995, p. 127.
Go to article

Authors and Affiliations

Urtnasan Erdenebold
1
ORCID: ORCID
Jei-Pil Wang Wang
1
ORCID: ORCID

  1. Pukyong National University, Department of Metallurgical Engineering, Busan, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

Distribution of tripeptidyl peptidase I (TPPI) activity in the structures of porcine lumbar spinal ganglia (LSG) was studied by enzyme histochemistry on cryostat sections from all the ganglia using the substrate glycyl-L-prolyl-L-methionyl-5-chloro-1-anthraquinonyl hydrazide (GPM-CAH) and 4-nitrobenzaldehyde (NBA) as visualization factor. Light microscopic observations showed TPPI activity in almost all the LSG structures. The enzyme reaction in different cell types was compared semi-quantitatively. Strong reaction was observed in the small neurons, satellite ganglia cells and some nerve fibers. Weak reactivity was found in the large sensory somatic neurons, whereas moderate reaction for TPPI was determined in the middle sensory somatic neurons and some nerve fibers. Statistical analysis by one-way ANOVA showed no significance of difference (when p<0.05) for the number of TPPI positive neurons per mm2. The original data obtained by the enzyme histochemistry method give us a reason to presume that TPPI actively participates in the functions of all the neuronal structures in porcine LSG. According to our results, it could be suggested that TPPI activity is important for the functions of autonomic and somatic sensory neurons.
Go to article

Bibliography


Aldskogius H, Elfvin LG, Forsman CA (1986) Primary sensory afferents in the inferior mesenteric ganglion and related nerves of the guinea pig. An experimental study with anterogradely transported wheat germ agglutinin- -horseradish peroxidase conjugate. J Auton Nerv Syst 15: 179-190.
Atanassova D, Lazarov N (2015) Histochemical demonstration of tripeptidyl aminopeptidase I in the rat carotid body. Acta Histochem 117: 219-222.
Bond M, Holthaus S-M, Tammen I, Tear G, Russell C (2013) Use of model organisms for the study of neuronal ceroid lipofuscinosis. Bio-chim Biophys Acta 1832: 1842-1865.
Bossowska A, Crayton R, Radziszewski P, Kmiec Z, Majewski M (2009) Distribution and neurochemical characterization of sensory dorsal root ganglia neurons supplying porcine urinary bladder. J Physiol Pharmacol 60 (Suppl 4): 77-81.
Cesta MF, Mozzachio K, Little PB, Olby NJ, Sills RC, Brown TT (2006) Neuronal ceroid lipofuscinosis in a Vietnamese pot-bellied pig (Sus scrofa). Vet Pathol 43: 556-560.
Cowan P J, Cooper DK, d’Apice A J (2014) Kidney xenotransplantation. Kidney Int 85: 265–275.
Dikov A, Dimitrova M, Ivanov I, Krieg R, Halbhub KJ (2000) Original method for the histochemical demonstration of tripeptidyl aminopep-tidase I. Cell Mol Biol 46: 1219-1225.
Dimitrova M, Ivanov I, Deleva D (2009) Distribution of tripeptidyl peptidase I activity of the rat brain and spinal cord. CR Acad Bulg Sci 62: 729 -734.
Dimitrova MB, Atanasova DY, Lazarov NE (2017a) Histochemical demonstration of tripeptidyl aminopeptidase I. In: Histochemistry of Single Molecules: Methods and Protocols. Pellicciari C, Biggiogera M (eds) Methods in molecular biology, vol. 1560, chapter 4, Humana Press, Springer Science+Business Media, New York, LLC, pp 55-68.
Dimitrova MB, Atanasova DY, Lazarov NE (2017b) Tripeptidyl peptidase I and its role in neurodegenerative and tumor diseases. In: Chakraborti S, Dhalla NS (eds) Pathophysiological aspects of proteases, Springer Science+Business Media, New York, LLC, pp 147-160.
Esposito MF, Malayil R, Hanes M, Deer T (2019) Unique characteristics of the dorsal root ganglion as a target for neuromodulation. Pain Med 20 (Suppl 1): S23-S30.
George D, Ahrens P, Lambert S (2018) Satellite glial cells represent a population of developmentally arrested Schwann cells. Glia 66: 1496-1506.
Gołabek AA (2006). Tripeptidyl-peptidase I – distribution, biogenesis, and mechanisms of activation. Postepy Biochem 52: 16-23.
Gutierrez K, Dicks N, Glanzner WG, Agellon LB, Bordignon V (2015) Efficacy of the porcine species in biomedical research. Fron Genet 6: 293.
Hanani M (2005) Satellite glial cells in sensory ganglia: from form to function. Brain Res Brain Res Rev 48: 457-476.
Ivanov I, Tasheva D, Todorova R, Dimitrova M (2009) Synthesis and use of 4-peptidylhydrazido-N-hexyl-1,8-naphthalimides as fluorogenic histochemical substrates for dipeptidyl peptidase IV and tripeptidyl peptidase I. Eur J Med Chem 44: 384-392.
Kida E, Gołabek AA, Walus M, Wujek P, Kaczmarski W, Wisniewski K (2001) Distribution of trypeptidyl peptidase I in human tissues under normal and pathological conditions. J Neuropathol Exp Neurol 60: 280-292.
Koike M, Shibata M, Ohsawa Y, Kametaka S, Waguri S, Kominami E, Uchiyama Y (2002) The expression of trypeptidyl peptidase I in vari-ous tissues of rats and mice. Arch Histol Cytol 65: 219-232.
Kozłowska A, Mikołajczyk A, Majewski M (2018a) Distribution and neurochemistry of porcine urinary bladder-projecting sensory neurons in subdomains of the dorsal root ganglia: A quantitative analysis. Ann Anat 216: 36-51.
Kozłowska A, Mikołajczyk A, Majewski M (2018b) Neurochemical difference between somato- and viscero-projecting sensory neurons in the pig. J Chem Neuroanat 94: 8-20.
Kurachi Y, Oka A, Itoh M, Mizuguchi M., Hayashi M., Takashima S (2001) Distribution and develop- ment of CLN2 protein, the late-infantile neuronal ceroid lipofuscinosis gene product. Acta Neuropathol 102: 20-26.
Kuzmuk K N, Schook LB (2011) Pigs as model in Biomedical Science. In: Rothschild MF, Ruvinsky A (eds) The genetic of the pig. CAB International, pp. 426-444.
Lunney J K (2007) Advances in swine biomedical model genomics. Int J Biol Sci 3: 179-184
Lelovas PP, Kostomitsopoulos NG, Xanthos TT (2014) A Comparative Anatomic and Physiologic Overview of the Porcine Heart. J Am Assoc Lab Anim Sci 53: 432-438.
Matthews MR, Cuello AC (1982) Substance P-immunoreactive peripheral branches of sensory neurons innervate guinea pig sympathetic neurons. Proc Natl Acad Sci 79: 1668-1672.
McDonald JK, Hoisington AR, Eisenhauer DA (1985) Partial purification and characterization of an ovarian tripeptidyl peptidase: a lysosomal exopeptidase that sequentially releases collagen-related (Gly-Pro-X) triplets. Biochem Biophys Res Commun 126: 63-71.
Nascimento AI, Mar FM, Sousa MM (2018) The intriquing nature of dorsal root ganglion neurons: Linking structure with polarity and func-tion. Prog Neurobiol 168: 86-103.
Pannese E (1981) The satellite cells of sensory ganglia. Adv Anat Embryol Cell Biol 65: 1-111.
Pannese E (2002) Perikaryal surface specializations of neurons in sensory ganglia. Int Rev Cytol 220: 1-34.
Pannese E (2010) The structure of perineuronal sheath of satellite glial cells (SGCs) in sensory ganglia. Neuron Glia Biology 6 (1): 3-10.
Pidsudko Z (2014) Immunohistochemical characteristics and distribution of sensory dorsal root Ganglia neurons supplying the urinary bladder in male pig. J Mol Neurosci 52: 71-81.
Russo D, Clavenzani P, Sorteni C, Minelli LB, Botti M, Gazza F, Panu R, Ragionieri L, Chiocchetti R (2013) Neurochemical features of boar lumbosacral dorsal root ganglion neurons and characterization of sensory neurons innervating the urinary bladder trigone. J Comp Neurol 521: 342-366.
Stefanov IS, Vodenicharov AP, Tsandev NS (2017) Localization of nicotinamide adenine dinucleotide phosphate diaphorase containing neu-rons and mast cells in porcine lumbar spinal ganglia. CR Acad Bulg Sci 70: 1473-1480.
Steinfeld R, Heim P, von Gregory H, Meyer K, Ullrich K, Goebel HH, Kohlschutter A (2002) Late infantile neuronal ceroid lipofuscinosis: quantitative description of the clinical course in patients with CLN2 mutations. Am J Med Genet 112: 347-354.
Summerfield A, Meurens F, Ricklin ME (2015) The immunology of the porcine skin and its value as a model for human skin. Mol Immunol 66: 14-21.
Go to article

Authors and Affiliations

A.P. Vodenicharov
1
M. Dimitrova
2
N.S. Tsandev
1
I.S. Stefanov
3

  1. Department of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine Trakia University of Stara Zagora, Bulgaria
  2. Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Science, Sofia, Bulgaria
  3. Department of Anatomy, Faculty of Medicine, Trakia University of Stara Zagora, Student Town 6000, Bulgaria
Download PDF Download RIS Download Bibtex

Abstract

Tight junction proteins are important for the maintenance and repair of the intestinal mucosal barrier. The present study investigated relationships among tight junction protein gene expres- sion, porcine epidemic diarrhea virus (PEDV) infection, and intestinal mucosal morphology in piglets. We compared the expression of six tight junction proteins (ZO-1, ZO-2, Occludin, Claudin-1, Claudin-4, and Claudin-5) between seven-day-old piglets infected with PEDV and normal piglets, as well as in PEDV-infected porcine intestinal epithelial cells (IPEC-J2). We also evaluated differences in mucosal morphology between PEDV-infected and normal piglets. The expression of six tight junction protein genes was lower in PEDV-infected piglets than in the normal animals. The expression of ZO-1, ZO-2, Occludin, and Claudin-4 in the intestine tissue was significantly lower (p<0.05) in PEDV-infected than in normal piglets. The expression of Claudin-5 in the jejunum was significantly lower in PEDV-infected piglets than in the normal animals (p<0.01). The expression of Claudin-1 and Claudin-5 genes in the ileum was signifi- cantly higher in PEDV-infected piglets than in normal piglets (p<0.01). Morphologically, the intestinal mucosa in PEDV-infected piglets exhibited clear pathological changes, including breakage and shedding of intestinal villi. In PEDV-infected IPEC-J2 cells, the mRNA expression of the six tight junction proteins showed a downward trend; in particular, the expression of the Occludin and Claudin-4 genes was significantly lower (p<0.01). These data suggest that the expression of these six tight junction proteins, especially Occludin and Claudin-4, plays an important role in maintaining the integrity of the intestinal mucosal barrier and resistance to PEDV infection in piglets.

Go to article

Authors and Affiliations

Q.F. Zong
Y.J. Huang
L.S. Wu
Z.C. Wu
S.L. Wu
W.B. Bao
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to determine the effects of feed addition of LAVIPAN PL5 probiotic preparation containing compositions of microencapsulated lactic acid bacteria ( Leuconostoc mesenteroides, Lactobacillus casei, Lactobacillus plantarum, Pediococcus pentosaceus) on production parameters and post-vaccinal immune response in pigs under field condition. The study was performed on 400 pigs in total and 60 pigs from this group were used to evaluate the effect of the product tested on the post-vaccinal response. The animals were divided into two groups: control group, fed without additive of LAVIPAN PL5 and the study group, receiving LAVIPAN PL5 at doses recommended by manufacturer from weaning to the end of fattening. The following parameters were recorded: main production parameters, including weight gains, fattening time (slaughter age) and animal health status during the study (mortality), and specific humoral post-vaccinal response after vaccination against swine erysipelas. The results indicate that the application of LAVIPAN PL5 had positive influence on the animals` productivity and did not significantly affect the post-vaccinal antibody levels and the development and maintenance of the post-vaccinal response, albeit the levels of antibodies were slightly higher in the animal receiving the test preparation. The higher average daily weight gains (by over 3%) which resulted in a 2 kg higher average weight at slaughter and a reduction of the fattening period by 5 days, undoubtedly contributed to significant economic benefits.
Go to article

Bibliography


Andersen AD, Cilieborg MS, Lauridsen C, Mørkbak AL, Sangild PT (2017) Supplementation with Lactobacillus paracasei or Pediococcus pentosaceus does not prevent diarrhoea in neonatal pigs infected with Escherichia coli F18. Br J Nutr 118: 109-120.
Bhandari SK, Opapeju FO, Krause DO, Nyachoti CM (2010) Dietary protein level and probiotic supplementation effects on piglet response to Escherichia coli K88 challenge: Performance and gut microbial population. Livest Sci 133: 185-188.
Blaabjerg S, Artzi DM, Aabenhus R (2017) Probiotics for the Prevention of Antibiotic-Associated Diarrhea in Outpatients-A Systematic Review and Meta Analysis. Antibiotics (Basel) 6: 21.
Bomba A, Nemcova R, Gancarcikova S, Herich R, Kastel R (1999) Potentiation of the effectiveness of Lactobacillus casei in the prevention of E. coli induced diarrhea in conventional and gnotobiotic pigs. Adv Exp Med Biol 473: 185-190.
Cha CN, Park EK, Yoo CY, Kim S, Lee HJ (2015) Effect of Lactobacillus plantarum on noxious gas emission and carcass quality grade in finishing pigs. J Biomed Res 16: 72-76.
Chattha KS, Roth JA, Saif LJ (2015) Strategies for design and application of enteric viral vaccines. Annu Rev Anim Biosci 3: 375-395.
Chattha KS, Vlasova AN, Kandasamy S, Esseili MA, Siegismund C, Rajashekara G, Saif LJ (2013) Probiotics and colostrum/milk differen-tially affect neonatal humoral immune responses to oral rotavirus vaccine. Vaccine 31: 1916-1923.
Cho JH, Zhao PY, Kim IH (2011) Probiotics as a dietary additive for pigs: a review. J Anim Vet Adv 10: 2127-2134.
Collins MD, Gibson GR (1999) Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial eco- logy of the gut. Am J Clin Nutr 69: 1052S-1057S.
Deng Z, Luo XM, Liu J, Wang H (2020) Quorum Sensing, Biofilm, and Intestinal Mucosal Barrier: Involvement the Role of Probiotic. Front Cell Infect Microbiol 10: 538077.
Dowarah R, Verma AK, Agarwal N (2017) The use of Lactobacillus as an alternative of antibiotic growth promoters in pigs: A review. Anim Nutr 3: 1-6.
Ferdous MF, Arefin MS, Rahman MM, Ripon MMR, Rashid MH, Sultana MR, Hossain MT, Ahammad MU, Rafiq K (2019) Beneficial effects of probiotic and phytobiotic as growth promoter alternative to antibiotic for safe broiler production. J Adv Vet Anim Res 6: 409-415.
Fooks LJ, Fuller R, Gibson GR (1999) Prebiotic, probiotics, and human gut microbiology. Int Dairy J 9: 53-61.
Gareau MG, Sherman PM, Walker WA (2010) Probiotics and the gut microbiota in intestinal health and disease. Nat Rev Gastroenterol Hepatol 7: 503–514.
Grela ER, Semeniuk V (2006) Consequences of the withdrawal of antibiotic growth promoters from animal feeding. Med Weter 62: 502-507.
Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and ap-propriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11: 506–514.
Kashket ER (1987) Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerance. FEMS Microbiol Rev 46: 233-244.
Kenny M, Smidt H, Mengheri E, Miller B (2011) Probiotics – do they have a role in the pig industry? Animal 5: 462-470.
Liao SF, Nyachoti M (2017) Using probiotics to improve swine gut health and nutrient utilization. Anim Nutr 3: 331-343.
Link R, Kováč G, Pistl J (2005) A note on probiotics as an alternative for antibiotics in pigs. J Anim Feed Sci 14: 513-519.
Maldonado Galdeano C, Cazorla SI, Lemme Dumit JM, Vélez E, Perdigón G (2019) Beneficial Effects of Probiotic Consumption on the Immune System. Ann Nutr Metab 74: 115-124.
Mani V, Harris AJ, Keating AF, Weber TE, Dekkers JC, Gabler NK (2013) Intestinal integrity, endotoxin transport and detoxification in pigs divergently selected for residual feed intake. J Anim Sci 91: 2141-2150.
Markowska-Daniel I (1991) Stimulation of immune respon- ses using natural and chemical immunomodulators in therapy and in prophylaxis. Med Weter 47: 306-309.
Markowska-Daniel I, Pejsak Z, Szmigielski S, Jeljaszewicz J, Pulverer G (1992a) Adjuvant properties of Propionibacterium avidum KP-40 in vaccination against endemic viral and bacterial infections. I. Swine immunized with live attenuated Aujeszky’s disease virus vaccine and ex-perimentally infected with virulent viruses. Zentralbl Bakteriol 277: 529-537.
Markowska-Daniel I, Pejsak Z, Szmigielski S, Sokolska G, Jeljaszewicz J, Pulverer G (1992b) Adjuvant properties of Propionibacterium avidum KP-40 in vaccination against endemic viral and bacterial infections. III. Swine immunized with live attenuated Erysipelothrix rhusiopa-thiae vaccine and experimentally infected with virulent strains R203 and R270B of E. rhusiopathiae. Zentralbl Bakteriol 277: 547-553.
Nowak P, Kasprowicz-Potocka M, Zaworska A, Nowak W, Stefańska B, Sip A, Grajek W, Juzwa W, Taciak M, Barszcz M, Tuśnio A, Grajek K, Foksowicz-Flaczyk J, Frankiewicz A (2017) The effect of eubiotic feed additives on the performance of growing pigs and the activ-ity of intestinal microflora. Arch Anim Nutr 71: 455-469.
Perdigón G, de Macias ME, Alvarez S, Oliver G, de Ruiz Holgado AP (1988) Systemic augmentation of the immune response in mice by feeding fermented milks with Lactobacillus casei and Lactobacillus acidophilus. Immunology 63: 17-23.
Pomorska-Mól M, Kwit K (2011) Adjuvant properties of herbs. Med Weter 67: 449-452.
Pomorska-Mól M, Kwit K, Czyżewska E, Markowska-Daniel I (2013) Effects of dietary phytogenic product on the performance and immune response of pigs. Bull Vet Inst Pulawy 57: 381-386.
Regulation (EC) No 1831/2003 on the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition. https://www.eumonitor.eu/9353000/1/j9vvik7m1c3gyxp/vitgbgiehjzr
Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on veterinary medicinal products and repealing Directive 2001/82/EC. https://www.legislation.gov.uk/eur/2019/6/contents
Rybarczyk A, Romanowski M, Karamucki T, Ligocki M (2016) The effect of Bokashi probiotic on pig carcass characteristics and meat quali-ty. FleischWirtschaft International 1: 74-77.
Shin D, Chang SY, Bogere P, Won K, Choi JY, Choi YJ, Lee HK, Hur J, Park BY, Kim Y, Heo J (2019) Beneficial roles of probiotics on the modulation of gut microbiota and immune response in pigs. PLoS One 14: e0220843.
Smith F, Clark JE, Overman BL, Tozel CC, Huang JH, Rivier JE, Blikslager AT, Moeser AJ (2010) Early weaning stress impairs develop-ment of mucosal barrier function in the porcine intestine. Am J Physiol Gastrointest Liver Physiol 298: G352–G363.
Smulski S, Turlewicz-Podbielska H, Wylandowska A, Włodarek J (2020) Non-antibiotic Possibilities in Prevention and Treatment of Calf Diarrhoea. J Vet Res 64: 119-126.
Valchev G, Popova-Ralcheva S, Bonovska M, Zaprianova I, Gudev D (2009) Effect of dietary supplements of herb extracts on performance in growing pigs. Biotechn Anim Husbandry 25: 859-870.
Valeriano VD, Balolong MP, Kang DK (2017) Probiotic roles of Lactobacillus sp. in swine: insights from gut microbiota. J Appl Microbiol 122: 554-567.
Vigors S, O’Doherty JV, Kelly AK, O’Shea CJ, Sweeney T (2016) The effect of divergence in feed efficiency on the intestinal microbiota and the intestinal immune response in both unchallenged and lipopolysaccharide challenged ileal and colonic explants. PLoS One 11: e0148145.
Wen K, Liu F, Li G, Bai M, Kocher J, Yang X, Wang H, Clark-Deener S, Yuan L (2015) Lactobacillus rhamnosus GG Dosage Affects the Adjuvanticity and Protection Against Rotavirus Diarrhea in Gnotobiotic Pigs. J Pediatr Gastroenterol Nutr 60: 834-843.
Yin H, Ye P, Lei Q, Cheng Y, Yu H, Du J, Pan H, Cao Z (2020) In vitro probiotic properties of Pediococcus pentosaceus L1 and its effects on enterotoxigenic Escherichia coli – induced inflammatory responses in porcine intestinal epithelial cells. Microb Pathog 144: 104163.
Yirga H (2015) The use of probiotics in animal nutrition. J Prob Health 3: 132.
Zhang W, Azevedo MS, Wen K, Gonzalez A, Saif LJ, Li G, Yousef AE, Yuan L (2008) Probiotic Lactobacillus acidophilus enhances the immunogenicity of an oral rotavirus vaccine in gnotobiotic pigs. Vaccine 26: 3655-3661.
Zhao PY, Kim IH (2015) Effect of direct-fed microbial on growth performance, nutrient digestibility, fecal noxious gas emission, fecal micro-bial flora and diarrhea score in weanling pigs. Anim Feed Sci Technol 200: 86-92.
Zimmermann B, Bauer E, Mosenthin R (2001) Pro- and prebiotics in pig nutrition potential modulators of gut health? J Anim Feed Sci 10: 47-56
Go to article

Authors and Affiliations

M. Pomorska-Mól
1
H. Turlewicz-Podbielska
1
J. Wojciechowski
2

  1. Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
  2. VETPOL Sp. z o.o., Grabowa 3, 86-300 Grudziądz, Poland
Download PDF Download RIS Download Bibtex

Abstract

Alveolar macrophages (AMs) are not only important immune cell of the host, but also important target cell of a variety of respiratory pathogens. They play an important role in defense against pathogen invasion and in maintaining tissue balance. Interferon (IFN)-γ is a well known multipotent cytokine that has antiviral and antibacterial immune activity and enhances antigen presentation. To better reveal the biological processes of porcine AMs activated by IFN-γ, transcriptomic analysis was performed using Illumina HiSeqTM technique. The results identified 2,248 differentially expressed genes (DEGs), of which 753 were upregulated and 1,495 were downregulated, in porcine AMs 12 h after IFN-γ stimulation, compared with mock-treated porcine AMs. A gene ontology function enrichment analysis of these DEGs indicated that these genes were significantly enriched in functional clusters such as immune response, defense response, and intracellular signaling cascades. Analyzing the Kyoto Encyclopedia of Genes and Genomes pathways of the DEGs showed that these genes are mainly involved in cytokine–cytokine receptor interactions, alpha linolenic acid metabolism, and the RIG-I-like receptor signaling pathway. This study shows that a massive gene expression change occurred in porcine AMs following IFN-γ stimulation, which is critical for understanding the mechanisms of IFN-γ-mediated macrophage activation and immune regulation.
Go to article

Authors and Affiliations

Q. Liu
1
H.-Y. Wang
1

  1. Nanchong Key Laboratory of Disease Prevention, Control, and Detection in Livestock and Poultry, Nanchong Vocational and Technical College, Nanchong 637131, China
Download PDF Download RIS Download Bibtex

Abstract

The present study was undertaken to highlight the influence of simvastatin administration on hepatocyte morphology, proliferation, and apoptosis. The study included 48 gilts aged 3 months (weighing ca. 30 kg) divided into groups I (control; n=24) and II, receiving 40 mg/animal simvas- tatin orally (simavastatin; n=24) for 29 days. The animals were euthanized on days subsequent to the experiment. The livers were sampled, fixed, and processed routinely for histopathology, histochemistry, and immunohistochemistry (for proliferating cell nuclear antigen, Bcl-2, and caspase-3). Apoptosis was visualized by terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL). Simvastatin administration caused acute hepatocyte swelling, glycogen de- pletion, hyperaemia, multifocal hepatocyte proliferation with occasional pseudoacinar formation, connective tissue hyperplasia, eosinophil infiltration, and interface hepatitis. The proliferating cell nuclear antigen index, mean diameter of argyrophilic nucleolar organizer regions, and Bcl-2 immunoexpression were lower compared to control, and mean caspase-3 immunoexpression was higher in group II compared to control. On day 25 and 29 single hepatocytes in the simvasta- tin-treated group were TUNEL-positive. Simvastatin caused morphological alteration which became more intense over time. The results from the present study suggest that simvastatin treat- ment may cause glycogen, lipid metabolism and cell membrane permeability distortion, fibrosis, interface hepatitis, reduction in hepatocyte proliferation and transcriptional activity, and enhanced vulnerability to apoptosis. Summing up the results, it can be concluded that simvastatin caused liver damage with similar morphological changes seen in autoimmune-like liver injury, which may indicate that simvastatin may induce autoimmune-like drug induced liver injury.

Go to article

Authors and Affiliations

M. Mikiewicz
I. Otrocka-Domagała
K. Paździor-Czapula
Download PDF Download RIS Download Bibtex

Abstract

The trapezius muscle (TRAP) belongs to the scapulothoracic group of muscles, which play a crucial role in the integrity and strength of the upper limb, trunk, head, and neck movements and, thus, in maintaining balance. Combined retrograde tracing (using fluorescent tracer Fast Blue, FB) and double-labelling immunohistochemistry were applied to investigate the chemical coding of motoneurons projecting to the porcine TRAP. FB-positive (FB+) motoneurons supplying the cervical (c-TRAP) and thoracic part (th-TRAP) of the right (injected with the tracer) TRAP were located within the IX-th Rexed lamina in the ipsilateral ventral horn of the grey matter of the spinal medulla. Immunohistochemistry revealed that nearly all the neurons were cholinergic in nature [choline acetyltransferase (CHAT)- or vesicular acetylcholine transporter (VACHT)-positive]. Many retrogradelly labelled neurons displayed also immunoreactivity to calcitonin gene-related peptide (CGRP; approximately 68% of FB+ neurons). The smaller number of nerve cells (5%, 3%, 2% or 1%, respectively) stained for nitric oxide synthase (n-NOS), vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY) and substance P (SP). The retrogradely labelled neurons were closely apposed by nerve fibres expressing immunoreactivity to CHAT, VACHT, CGRP, SP, DβH, VIP, n-NOS, NPY, GAL, Leu-Enk and Met-Enk. Taking into account the clinical relevance of TRAP, the present results may be useful in designing further research aimed at the management of various dysfunctions of the muscle.
Go to article

Bibliography

1. Akamatsu FE, Ayres BR, Saleh SO, Hojaij F, Andrade M, Hsing WT, Jacomo AL (2015) Trigger points: an anatomical substratum. Biomed Res Int 2015: 623287.
2. Arita H, Sakamoto M, Hirokawa Y, Okado N (1993) Serotonin innervation patterns differ among the various medullary motoneuronal groups involved in upper airway control. Exp Brain Res 95: 100-110.
3. Arlotta M, Lovasco G, McLean L (2011) Selective recruitment of the lower fibers of the trapezius muscle. J Electromyogr Kinesiol 21: 403-410.
4. Arluison M, Conrath-Verrier M, Tauc M, Mailly P, De la Manche IS, Cesselin F, Bourgoin S, Hamon M (1983a) Different localizations of Met-enkephalin-like immunoreactivity in rat forebrain and spinal cord using hydrogen peroxide and Triton X-100. Light microscopic study. Brain Res Bull 11: 555-571.
5. Arluison M, Conrath-Verrier M, Tauc M, Mailly P, De la Manche IS, Dietl M, Cesselin F, Bourgoin S, Hamon M (1983b) Met-enkephalin-like immunoreactivity in rat forebrain and spinal cord using hydrogen peroxide and Triton X-100. Ultrastructural study. Brain Res Bull 11: 573-586.
6. Atoji Y, Kusindarta DL, Hamazaki N, Kaneko A (2005) Innervation of the rat trachea by bilateral cholinergic projections from the nucle-us ambiguus and direct motor fibers from the cervical spinal cord: a retrograde and anterograde tracer study. Brain Res 1031: 90-100.
7. Barber RP, Phelps PE, Houser CR, Crawford GD, Salvaterra PM, Vaughn JE (1984) The morphology and distribution of neurons con-taining choline acetyltransferase in the adult rat spinal cord: an immunocytochemical study. J Comp Neurol 229: 329-346.
8. Boehm I, Alhindi A, Leite AS, Logie C, Gibbs A, Murray O, Farrukh R, Pirie R, Proudfoot C, Clutton R, Wishart TM, Jones RA, Gillingwater TH (2020) Comparative anatomy of the mammalian neuromuscular junction. J Anat 237: 827-836.
9. Chan PK, Hems TE (2006) Clinical signs of accessory nerve palsy. J Trauma, 60: 1142-1144.
10. Chu J (1995) Dry needling (intramuscular stimulation) in myofascial pain related to lumbosacral radiculopathy. Eur J Phys Rehabil Med 5: 106-121.
11. Chiocchetti R, Grandis A, Bombardi C, Clavenzani P, Spadari A, Gentile A, Bortolami R (2005) Localization, morphology, and im-munohistochemistry of spinal cord and dorsal root ganglion neurons that innervate the gastrocnemius and superficial digital flexor mus-cles in cattle. Am J Vet Res 66: 710-720.
12. Csillik B, Tajti L, Kovacs T, Kukla E, Rakic P, Knyihar-Csillik E (1993) Distribution of calcitonin gene-related peptide in vertebrate neu-romuscular junctions: relationship to the acetylcholine receptor. J Histochem Cytochem 41: 1547-1555.
13. De Meulemeester K, Calders P, De Pauw R, Grymonpon I, Govaerts A, Cagnie B (2017) Morphological and physiological differences in the upper trapezius muscle in patients with work-related trapezius myalgia compared to healthy controls: A systematic review. Muscu-loskelet Sci Pract 29: 43-51.
14. Dudek A, Sienkiewicz W (2009) Immunohistochemical characterisation of the motoneurones supplaying trapezius muscle (musculus trapezius) in the rat. Abstract Book of the 29-th Congress of Polish Anatomical Society, Bydgoszcz, September 3-5, p 23.
15. Dudek A, Sienkiewicz W, Kaleczyc J (2015) Contribution of the dorsal branch of the accessory nerve to the innervation of the trapezius muscle in the pig - a retrograde tracing study. Acta Zoologica 96: 519-529.
16. Dudek A, Sienkiewicz W, Marczak M, Kaleczyc J (2011) Immunohistochemical properties of motoneurons supplying the trapezius mus-cle in the rat. Pol J Vet Sci 14: 199-205.
17. Eberhorn AC, Ardeleanu P, Buttner-Ennever JA, Horn AK (2005) Histochemical differences between motoneurons supplying multiply and singly innervated extraocular muscle fibers. J Comp Neurol 491: 352-366.
18. Eberhorn AC, Buttner-Ennever JA, Horn AK (2006) Identification of motoneurons supplying multiply- or singly-innervated extraocular muscle fibers in the rat. Neuroscience 137: 891-903.
19. Fernandez HL, Chen M, Nadelhaft I, Durr JA (2003) Calcitonin gene-related peptides: their binding sites and receptor accessory proteins in adult mammalian skeletal muscles. Neuroscience 119: 335-345.
20. Gardan D, Gondret F, Louveau I (2006) Lipid metabolism and secretory function of porcine intramuscular adipocytes compared with subcutaneous and perirenal adipocytes. Am J Physiol Endocrinol Metab 291: 372-380.
21. Grozdanovic Z (2001) NO message from muscle. Microsc Res Tech 55: 148-153.
22. Grozdanovic Z, Baumgarten HG (1999) Nitric oxide synthase in skeletal muscle fibers: a signaling component of the dystro-phin-glycoprotein complex. Histol Histopathol 14: 243-256.
23. Handel SE, Stickland NC (1986) “Giant” muscle fibres in skeletal muscle of normal pigs. J Comp Pathol 96: 447-457.
24. Hietanen M, Pelto-Huikko M, Rechardt L (1990) Immunocytochemical study of the relations of acetylcholinesterase, enkephalin-, sub-stance P-, choline acetyltransferase- and calcitonin gene-related peptide-immunoreactive structures in the ventral horn of rat spinal cord. Histochemistry 93: 473-477.
25. Hisa Y, Tadaki N, Koike S, Bamba H, Uno T (1998) Calcitonin gene-related peptide-like immunoreactive motoneurons innervating the canine intrinsic laryngeal muscles. Ann Otol Rhinol Laryngol 107: 1029-1032.
26. Hisa Y, Tadaki N, Uno T, Okamura H, Taguchi J, Ibata Y (1994) Calcitonin gene-related peptide-like immunoreactive motoneurons in-nervating the canine inferior pharyngeal constrictor muscle. Acta Otolaryngol 114: 560-564.
27. Holtman JR Jr, Norman WP, Skirboll L, Dretchen KL, Cuello C, Visser TJ, Hokfelt T, Gillis RA (1984) Evidence for 5-hydroxytryptamine, substance P, and thyrotropin-releasing hormone in neurons innervating the phrenic motor nucleus. J Neurosci 4: 1064-1071.
28. Homonko DA, Theriault E (2000) Downhill running preferentially increases CGRP in fast glycolytic muscle fibers. J Appl Physiol (1985 ) 89: 1928-1936.
29. Hou N, Du X, Wu S (2022) Advances in pig models of human diseases. Animal Model Exp Med 5: 141-152.
30. Houser CR, Crawford GD, Barber RP, Salvaterra PM, Vaughn JE (1983) Organization and morphological characteristics of cholinergic neurons: an immunocytochemical study with a monoclonal antibody to choline acetyltransferase. Brain Res 266: 97-119.
31. Iaizzo PA, Lehmann-Horn F (1989) The in vitro determination of susceptibility to malignant hyperthermia. Muscle Nerve 12: 184-190.
32. Ichikawa T, Shimizu T (1998) Organization of choline acetyltransferase-containing structures in the cranial nerve motor nuclei and spinal cord of the monkey. Brain Res 779: 96-103.
33. Jones SW, Parr T, Sensky PL, Scothern GP, Bardsley RG, Buttery PJ (1999) Fibre type-specific expression of p94, a skeletal mus-cle-specific calpain. J Muscle Res Cell Motil 20: 417-424.
34. Lefaucheur L (1990) Changes in muscle fiber populations and muscle enzyme activities in the primiparous lactating sow. Reprod Nutr Dev 30: 523-531.
35. Lu IC, Wang HM, Kuo YW, Shieh CF, Chiang FY, Wu CW, Tsai CJ. (2010) Electromyographic study of differential sensitivity to suc-cinylcholine of the diaphragm, laryngeal and somatic muscles: a swine model. Kaohsiung J Med Sci 26: 640-646.
36. Lunney JK, Van Goor A, Walker KE, Hailstock T, Franklin J, Dai C (2021) Importance of the pig as a human biomedical model. Sci Transl Med 13 (621): eabd5758.
37. Maley B, Elde R (1981) Localization of substance P-like immunoreactivity in cell bodies of the feline dorsal vagal nucleus. Neurosci Lett 27: 187-191.
38. Merighi A, Kar S, Gibson SJ, Ghidella S, Gobetto A, Peirone SM, Polak JM (1990) The immunocytochemical distribution of seven peptides in the spinal cord and dorsal root ganglia of horse and pig. Anat Embryol (Berl) 181: 271-280.
39. Neumann DA (2017) Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation. 3rd ed., Elsevier, St Louis.
40. Piehl F, Arvidsson U, Hokfelt T, Cullheim S (1993) Calcitonin gene-related peptide-like immunoreactivity in motoneuron pools inner-vating different hind limb muscles in the rat. Exp Brain Res 96: 291-303.
41. Popper P, Micevych PE (1989) Localization of calcitonin gene-related peptide and its receptors in a striated muscle. Brain Res 496: 180-186.
42. Rock E, Kozak-Reiss G. (1987) Effect of halothane on the Ca2+-transport system of surface membranes isolated from normal and ma-lignant hyperthermia pig skeletal muscle. Arch Biochem Biophys 256: 703-707.
43. Rock E, Sidi Mammar M, Thomas MA, Viret J, Vignon X (1990) Halothane-induced functional and structural modifications in sarco-plasmic reticulum membranes from pig skeletal muscle. Biochimie 72: 245-250.
44. Sakanaka M (1992) Development of neuronal elements with substance P-like immunoreactivity in the central nervous system. Ontogeny of transmitters and peptides in the CNS. Handbook of chemical neuroanatomy. Elsevier, Amsterdam-London-New york-Tokyo, pp 197-255.
45. Schiaffino S, Reggiani C. (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91: 1447-1531.
46. Senba E, Shiosaka S, Hara Y, Inagaki S, Sakanaka M, Takatsuki K, Kawai Y, Tohyama M (1982) Ontogeny of the peptidergic system in the rat spinal cord: immunohistochemical analysis. J Comp Neurol 208: 54-66.
47. Sienkiewicz W, Dudek A, Kaleczyc J, Chroszcz A (2010) Immunohistochemical characterization of neurones in the hypoglossal nucleus of the pig. Anat Histol Embryol 39: 152-159.
48. Swindle MM, Makin A, Herron AJ, Clubb FJ Jr, Frazier KS (2012) Swine as models in biomedical research and toxicology testing. Vet Pathol 49: 344-356.
49. Vazquez C, Anesetti G, Martinez PL (1999) Transient expression of nitric oxide synthase in the hypoglossal nucleus of the rat during early postnatal development. Neurosci Lett 275: 5-8.
50. Villar MJ, Huchet M, Hokfelt T, Changeux JP, Fahrenkrug J, Brown JC (1988) Existence and coexistence of calcitonin gene-related peptide, vasoactive intestinal polypeptide- and somatostatin-like immunoreactivities in spinal cord motoneurons of developing embryos and post-hatch chicks. Neurosci Lett 86: 114-118.
51. Villar MJ, Roa M, Huchet M, Hokfelt T, Changeux JP, Fahrenkrug J, Brown JC, Epstein M, Hersh L (1989) Immunoreactive calcitonin gene-related peptide, vasoactive intestinal polypeptide, and somatostatin in developing chicken spinal cord motoneurons. Eur J Neurosci 1: 269-287.
52. Vizzard MA, Erdman SL, Roppolo JR, Forstermann U, de Groat WC (1994) Differential localization of neuronal nitric oxide synthase immunoreactivity and NADPH-diaphorase activity in the cat spinal cord. Cell Tissue Res 278: 299-309.
53. Wessendorf MW, Elde RP (1985) Characterization of an immunofluorescence technique for the demonstration of coexisting neurotrans-mitters within nerve fibers and terminals. J Histochem Cytochem 33: 984-994.
54. Wiater JM, Bigliani LU (1999) Spinal accessory nerve injury. Clin Orthop Relat Res 368: 5-16.
Go to article

Authors and Affiliations

A. Dudek
1
W. Sienkiewicz
1
E. Lepiarczyk
2
J. Kaleczyc
1

  1. Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland
  2. Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum,University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082, Olsztyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim was to explore the feasibility of using bamboo vinegar powder as an antibiotics substitute in weaning piglets. Forty-five healthy Duroc × Landrance × Yorshire piglets (weight 6.74 ± 0.17 kg; age 31 days) were randomly divided into the control group (basic diet), ANT group (basic diet + 0.12% compound antibiotics), BV1 group (basic diet + 0.1% bamboo vinegar powder), BV5 group (basic diet + 0.5% bamboo vinegar powder) and BV10 group (basic diet + 1% bamboo vinegar powder). MyD88 and CD14 expression in immune tissues was examined using real-time PCR. MyD88 expression in the control group were significantly lower than that in other groups in all tissues (p<0.05), while CD14 expression showed the opposite trend. MyD88 expression was significantly higher in the BV10 group than in other groups in lung tissue (P<0.05), significantly higher in the ANT group than in the BV1 group in the kidneys (P<0.05), significantly higher in the BV10 group than in the BV1 group in the thymus (P<0.05), and signifi- cantly higher in the BV1 group than in the BV10 group in the lymphatic tissue (P<0.05). These differences between experimental groups were not observed for the CD14 gene (P>0.05). Thus, adding bamboo vinegar powder to the basic diet of weaning piglets had immune effects similar to antibiotics and the effect was dose-dependent. Moreover, the MyD88 and CD14 genes appear to play a role in these immune effects

Go to article

Authors and Affiliations

W.Y. Qin
L.N. Gan
L. Dong
L.H. Yu
S.L. Wu
W.B. Bao
Download PDF Download RIS Download Bibtex

Abstract

The aim of the present study was to investigate whether the anterior chamber constitutes part of the normal migratory pathway of CD4+ and CD8+ lymphocytes in cattle and swine. The cells obtained from aqueous humor of cows and pigs were stained for CD4 and CD8 receptors, and subsequently analyzed with flow cytometry. The mean percentage of CD4+CD8-, CD4-CD8+ and CD4+CD8+ cells within the total lymphocyte population of the bovine anterior chamber was, respectively, 17.88, 12.64 and 27.26%. In turn, the mean values of these parameters in pigs were 1.77, 38.48 and 17.45, respectively. Among bovine and porcine CD4+CD8+ cells prevalent were those displaying CD4lowCD8low and CD4lowCD8high phenotypes, respectively. The results suggest that the anterior chamber in cattle and swine is an element in the normal migratory pathway of CD4+, CD8+ and CD4+CD8+ cells. Furthermore, the contribution of these subsets in the anterior chamber lymphocyte population can differ considerably between animal species.
Go to article

Authors and Affiliations

H. Ziółkowski
T. Maślanka
P. Socha
N. Ziółkowska
M. Dąbrowski
J. Małaczewska
Download PDF Download RIS Download Bibtex

Abstract

The paper reviews selected methods of agricultural biogas production and characterizes their technical and technological aspects. The conditions of the anaerobic fermentation process in the reactor with adhesive skeleton bed were analyzed. The required technological criteria for the production of biogas from a substrate in the form of pig slurry were indicated. As part of experimental studies, evaluation of the biogas replacement resistance coefficient and the permeability coefficient as a function of the Reynolds number were made. The method of numerical simulation with the use of a tool containing computational fluid dynamics codes was applied. Using the turbulent flow model – the RANS model with the enhanced wall treatment option, a numerical simulation was carried out, allowing for a detailed analysis of hydrodynamic phenomena in the adhesive skeleton bed. The paper presents the experimental and numerical results that allow to understand the fluid flow characteristics for the intensification of agricultural biogas production.
Go to article

Bibliography

[1] Grzegorzewicz J., Gruszecki Z., Sciezynski H., Cieslak R., Smaga M., Jurkowski A., Matyja K., Papuga W.: Bubble Reactor. Patent Office of the Republic of Poland. Patent Application P.174663, 1994 (in Polish).
[2] http://pfee.de/en/cellroll/ (accessed 15 Apr. 2018).
[3] http://www.ows.be/household_waste/dranco/ (accessed 15 Apr. 2018).
[4] https://www.hz-inova.com/hitachi-zosen-inova-doubles-up-with-contract-forsecond-kompogas-plant-in-peloponnese-region/ (accessed 12 May 2018).
[5] http://www.valorgainternational.fr/en/mpg3-128079–VALORGA-SANAEROBIC-DIGESTION-PROCESS.html (accessed 12 May 2018).
[6] Oniszk-Popławska A., Matyka M.: Final report on the field research. “Comprehensive assessment of the conditions for biogas production in the Lubelskie Voivodeship”. Regional Economic Change Management System, 2012 (in Polish).
[7] Jedrczak A.: Biological waste treatment. Przeglad Komunalny (2001), 6, 89–92 (in Polish). [8] Wałowski G.: Developing technique anaerobic digestion in the contex of renewable energy sources. In: Proc. 26th Eur. Biomass Conf., Copenhagen, 14-17 May 2018, 798–808
[9] Kowalczyk-Jusko A.: Biogas plants an opportunity for agriculture and the environment. Fundacja na rzecz Rozwoju Polskiego Rolnictwa, 2013 (in Polish).
[10] Głodek E.: Report on the EU project POKL.08.02.01-16-028 / 09 Sources of Energy in the Opole region 2013 promotion, technologies, support, implementation. Institute of Ceramics and Building Materials, Opole 2010. (in Polish).
[11] den Boer E., Szpadt R.: Biogas plants as an opportunity for agriculture and the environment]. In: Proc. Conf. on 24 Oct. 2013, Dolnoslaski Osrodek Doradztwa Rolniczego we Wrocławiu (in Polish).
[12] Karłowski J., Kliber A., Myczko A., Golimowska R., Myczko R.: Agronomy in the sustainable development of modern agriculture]. In: Proc. 4th Sci. Conf. of the Polish Agronomic Society, Warszawa, 5-7 Sept. 2011 (in Polish).
[13] Myczko A., Myczko R., Kołodziejczyk T., Golimowska R., Lenarczyk J., Janas Z., Kliber A., Karłowski J., Dolska M.: Construction and Operation of Agricultural Biogas Plants. Wyd. ITP, Warszawa Poznan 2011.
[14] Kołodziejczyk T., Myczko R., Myczko A.: Use of residual non-food cellulosic material for biogas production. Ciepłownictwo, Ogrzewanictwo, Wentylacja 42(2011), 9, 360–363. (in Polish).
[15] Wałowski G.: Interpretation of the mechanism of biogas flow through an adhesive bed in analogy to gas-permeability for a structural model of a porous material. Int. J. Curr. Res. 10(2018), 12, 76225–76228.
[16] Wałowski G.: Multi-phase flow assessment for the fermentation process in monosubstrate reactor with skeleton bed. J. Water Land Dev. 42(2019), 7-9, 150–156.
[17] Myczko A., Kliber A., Tupalski L.: The latest achievements in the field of renewable energy sources along with the presentation of barriers to the implementation of research results into business practice. In: The Latest Developments in the Field of RES, Including the Presentation of Barriers to the Implementation of Research Results in Business Practice and Suggestions for their Solutions (B. Mickiewicz, Ed.), Koszalin 2012 (in Polish).
[18] Wałowski G., Borek, K. Romaniuk W., Wardal W.J., Borusewicz A.: Modern Systems of Obtaining Energy – Biogas. Wydawnictwo Wyzszej Szkoły Agrobiznesu w Łomzy, Łomza 2019 (in Polish).
[19] Strzelecki T., Kostecki S., Zak S.: Modelling of flows through porous media. Dolnoslaskie Wydawnictwo Edukacyjne, Wrocław, 2008. (in Polish).
[20] https://www.ansys.com/products/fluids/ansys-fluent (accessed 15 Apr. 2018).
Go to article

Authors and Affiliations

Grzegorz Wałowski
1
ORCID: ORCID

  1. Institute of Technology and Life Sciences, Falenty, Department of Renewable Energy, Poznań Branch, ul. Biskupińska 67, 60-463 Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

The Directive on National Emission Ceilings specifies the reduction of ammonia (NH 3) emissions among other air pollutants, which is most significant for the agricultural sector. The ammonia emission limit set for Hungary was a 10% reduction by 2020, while the target of 32% should be reached by 2030 compared to the 2005 reference year. The paper presents the results of a survey on pig production technology in Hungary from 97 domestic farms. The study aims to know the level of implementation of reduction techniques in livestock production and manure management and highlights the need for further improvements in this production sector. The research found that the application of ammonia reduction techniques was not considered widespread, either in livestock buildings or in manure storage (treatment) and during field application. For almost all (more than 90%) pig production groups, the housing systems were the reference without additional emission reduction. For manure storage, farms have insulated storage under the current regulation, however, significantly more emission reduction technologies were in the variant without cover or crust. Slurry spreading was mainly used with manure application techniques, but more emission-friendly injection and band spreading were also emerging. Besides the expected immediate incorporation, a high proportion of manure was applied between 12 and 24 hours or even after 24 hours. In the studied elements of manure management, significant improvements are needed in applying techniques to reduce ammonia emissions. Effective results can be achieved even by shortening the time between manure application and incorporation with efficient work organization.
Go to article

Bibliography

  1. Benedek, Zs., Baranyai, N. & Dublecz, K. (2016). Pig research, Georgikon Report Ministry of Agriculture and Rural Development (FVM), University of Pannonia – Georgikon Faculty. (in Hungarian)
  2. Bittman, S., Dedina, M., Howard, C.M., Oenema, O. & Sutton, M.A. (eds). (2014). Options for Ammonia Mitigation – Guidance from the UNECE Task Force on Reactive Nitrogen, Centre for Ecology and Hydrology, Edinburgh, UK, 2014.
  3. Decree No. 59/2008. (IV. 29.) of the Ministry of Agriculture laying down Rules for Action Program against Agricultural Nitrate Pollution, Data Reporting and Record Keeping.
  4. EC (2016). Directive (EU) 2016/2284 of the European Parliament and of the council of 14 December 2016 on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Directive 2001/81/EC, Official Journal of the European Union, L334/1.
  5. Eőry, V., Kujáni, K. & Laskai-Varga, B., (Ministry of Agriculture). (2020). National Air Pollution Control Programme (NAPCP) – Agriculture Sub-Program. (https://ec.europa.eu/environment/ air/reduction/NAPCP.htm (accessed on 10.3.2021))
  6. Fenyvesi, L., Mátyás, L. & Pazsiczki, I. (2003). Pig Husbandry Technologies, Hungarian Institute of Agricultural Engineering, Gödöllő, ISBN: 963-611-395-5, 2003.
  7. Foged, H., Flotats, X., Bonmatí, A., Palatsi, J., Magrí, A. & Schelde, K. (2011). Inventory of Manure Processing Activities in Europe, Technical Report No. I to the European Commission, Directorate- -General Environment concerning Manure Processing Activities in Europe – Project reference: ENV.B.1/ETU/2010/0007
  8. Hegedűsné Baranyai, N., Dublecz, K. & Benedek, Zs. (2016). Results of surveys of husbandry technologies and feeding practices related to the determination of nitrogen and ammonia emissions in the Hungarian pig sector, Presentations at the pig sector consultation held on 15 November 2016 at the Hungarian Ministry of Agriculture, (in Hungarian).
  9. (https://sertesinfo.aki.gov.hu/publikaciok/publikacio/a:1036/ (accessed on 22 March 2021)).
  10. Hungarian Central Statistical Office. (2018). Age and sex distribution of pig population, (http://www.ksh.hu/docs/hun/xstadat/xstadat_ evkozi/e_oma003.html (accessed on 5.3.2021)).
  11. Hungarian Meteorological Service. (2020). National Inventory Report for 1985–2018. (https://unfccc.int/documents/226419 (accessed on:19.04.2021)).
  12. Ifip (2010). Bâtiments d’Élevage Porcin et Environnement. Analyse de l’enquête de novembre 2008 réalisée par le SCEES. 272p
  13. Insausti, M., Timmis, R., Kinnersley, R. & Rufino, M.C. (2020). Advances in sensing ammonia from agricultural sources, Science of The Total Environment, 706, 135124. DOI: 10.1016/j. scitotenv.2019.135124
  14. Jarosz, Z., Faber, A. (2020). Possibilities of reducing ammonia emissions from agriculture – Scenario for 2030, Annals PAAAE 2020. 22, pp. 41–48.
  15. Janni, K. & Cortus, E. (2020). Common Animal Production Systems and Manure Storage Methods. (In Animal Manure: Production, Characteristics, Environmental Concerns, and Management). DOI: 10.2134/asaspecpub67.c3
  16. Koltay, I.A., Benedek, Zs., Hegedűsné Baranyai, N., Such, N.A., Farkas, L., Nagy, J., Szűcs, K., Pál, L., Wágner, L. & Dublecz, K. (2018). Effect of feeding reduced protein diets on ammonia emissions from pigs In: Szabó, Csaba (eds) Spring Wind 2018. pp. 54–72. (in Hungarian)
  17. Kozłowski, K., Dach, J., Lewicki, A., Malińska, K., Paulino do Carmo, I.E. & Czekala, W. (2019). Potential of biogas production from animal manure in Poland, Archives of Environmental Protection, 45, 3, pp. 99–108. DOI: 10.24425/aep.2019.128646
  18. Loyon, L. (2018). Overview of Animal Manure Management for Beef, Pig, and Poultry Farms in France, Frontiers in Sustainable Food Systems, 2:36. DOI: 10.3389/fsufs.2018.00036
  19. Mielcarek-Bocheńska, P. & Rzeźnik, W. (2019). Ammonia emission from livestock production in Poland and its regional diversity, in the years 2005–2017, Archives of Environmental Protection, 45, 1, pp. 114–121. DOI: 10.24425/aep.2019.130247
  20. Ministry of Agriculture. (2020) BAT Pig Guideline, Guideline for Determining the Best Available Techniques in the Process of Authorisation of Intensive Rearing of Pigs), Hermann Ottó Intézet, (http://www.hermanottointezet.hu/docs/BAT_ utmutato_az_intenziv_sertestenyeszteshez_2020.pdf (accessed on 8.08.2021)) (in Hungarian)
  21. Newell Price, J.P., Harris, D., Taylor, M., Williams, J.R., Anthony, S.G., Duethmann, D., Gooday, R.D., Lord, E.I., Chambers, B.J., Chadwick, D.R. & Misselbrook, T.H. (2011). An Inventory of Mitigation Methods and Guide to their Effects on Diffuse Water Pollution, Greenhouse Gas Emissions and Ammonia Emissions from Agriculture’. Prepared as part of Defra Project WQ0106.
  22. Péterfalvi, N., Magyar, M., Vojtela, T. & Keller, B. (2017). Investigation of ammonia emissions and reduction possibilities in pig farming NARIC Young Researchers Days II. professional conference, Szeged, pp. 21–28. (in Hungarian)
  23. Piwowar, A. (2020). Farming Practices for Reducing Ammonia Emissions in Polish Agriculture. Atmosphere, 11 (12), 1353. DOI: 10.3390/atmos11121353
  24. Sajeev, E.P.M., Winiwarter, W. & Amon, B. (2018). Greenhouse Gas and Ammonia Emissions from Different Stages of Liquid Manure Management Chains: Abatement Options and Emission Interactions, Journal of Environmental Quality, 47(1), pp. 30– 41. DOI: 10.2134/jeq2017.05.0199
  25. Santonja, G.G., Goergitzikis, K., Scalet, B.M., Montobbio, P., Roudier, S. & Sancho, L.D. (2017). Best Available Techniques (BAT) Reference Document for the Intensive Rearing of Poultry or Pigs. EUR 28674 EN. DOI: 10.2760/020485
  26. Soha, T., Papp, L., Csontos, Cs. & Munkacsy, B. (2021). The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area, Renewable and Sustainable Energy Reviews, 141, 110822. DOI: 10.1016/j. rser.2021.110822
  27. Sommer, S.G. & Hutchings, N.J. (2001). Ammonia emission from field applied manure and its reduction. European Journal of Agronomy, 15(1), pp. 1–15. DOI: 10.1016/S1161-0301(01)00112-5
  28. Sutton, M.A., Howard, C.M., Erisman, J.W., Billen, G., Bleeker, A., Grennfelt, P., van Grinsven, H. & Grizzetti, B. (2011). The European nitrogen assessment: Sources, effects and policy perspectives. Cambridge Univ. Press, Cambridge, UK.
  29. Velthof, G.L., Van Bruggen, C., Groenestein, C.M., DE HaanB.J., Hoogeveen, M.W. & Huijsmans, J.F.M. (2012). A model for inventory of ammonia emissions from agriculture in the Netherlands, Atmospheric Environment 46: 248–255. DOI: 10.1016/j.atmosenv.2011.09.075
  30. World Health Organization (WHO). (2013). Health effects of particulate matter. Policy implications for countries in eastern Europe, Caucasus and Central Asia, World Health Organization, (http://www.euro. who.int/__data/assets/pdf_file/0006/189051/Health-effects-ofparticulate- matter-final-Eng.pdf (accessed on 10.3.2021)
Go to article

Authors and Affiliations

Tibor Vojtela
1
Marianna Magyar
3
Sándor Koós
3
Nóra Péterfalvi
2
László Fenyvesi
2
Béla Pirkó
3

  1. Hungarian University of Agriculture and Life Sciences, University Laboratory Center, Hungary
  2. Hungarian University of Agriculture and Life Sciences, Institute of Technology, Hungary
  3. Centre for Agricultural Research, Institute of Soil Sciences, Hungary
Download PDF Download RIS Download Bibtex

Abstract

The present study investigated the distribution and chemical properties of nerve cell bodies within the trunk of the vagus nerve in juvenile female pigs (n=4) using double-labelling immunofluorescence. The neurons appeared mostly as single cells or formed streaks of cells or small ganglia. Many of the perikarya were cholinergic (VAChT-positive; VAChT+) or adrenergic (DβH+) in nature and no SP+ or CGRP+ neurons were encountered. There were no distinct left-right differences regarding the number and chemical coding of the neuronal somata, however, these characteristics significantly varied between particular nerve segments investigated. The vagosympathetic trunks, and thoracic and abdominal segments of the vagus nerve contained on average (the numerical values represent the means for both the left and right corresponding nerve segments) 142, 236, and 111 PGP 9.5-positive neurons, respectively. Proportions of cholinergic and adrenergic neurons were as follows: 0% and 100%, 54.2% and 33.2%, and 52.8% and 35.4%, respectively. Relatively many neurons in the thoracic and abdominal segments stained also for NOS (39.2% and 39.9%, respectively). It remains to be determined whether the porcine intravagal neurons represent a developmental relic, or whether they have any specific functional significance.
Go to article

Authors and Affiliations

W. Sienkiewicz
1
M. Klimczuk
1
M. Majewska
2
J. Kaleczyc
1

  1. Department of Animal Anatomy, Faculty of Veterinary Medicine,University of Warmia and Mazury, Oczapowskiego 13, 10-719 Olsztyn, Poland
  2. Department of Human Physiology and Pathophysiology, School of Medicine,University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland

This page uses 'cookies'. Learn more