Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 16
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Mining tremors may have an impact on the safety risk of steel pipelines through their effects. It is therefore important to quantify the impact of a high-energy mining tremor in terms of strength. In addition, a comparison of the results obtained with the effect of a seismic tremor can illustrate the scale of such a hazard. Recently, this has been a very frequently raised issue in the area of surface protection against negative mining impacts and the protection of post-mining areas. Ensuring safe use is particularly important for gas transmission elements. This paper presents the results of a comparative analysis of the impact of mining tremors and seismic impacts on a specimen steel pipeline segment. The analyzed pipeline is located in the eastern part of Poland in the area of paraseismic impacts of the LGCD (Legnica-Glogow Copper District) mine. For this purpose, an analytical approach was used to assess the impact of seismic wave propagation on underground linear infrastructure facilities. Accelerogram records for the 02-06-2023 seismic tremor from Turkey and the mining tremor for 11-25-2020 were used. In the case of the design of underground pipelines, the cross-section of the element for which measures describing wall stress and the ovalization of the cross-section are determined is usually considered. In the situation of the influence of seismic wave propagation or so-called permanent ground deformation, the response of the pipeline in the longitudinal direction is analyzed. As a final result, longitudinal strains transferred to the pipeline as a consequence of the propagating seismic wave and mining tremor were determined. The absolute difference between the deformations in the ground and along the length of the pipeline was determined. This type of analysis has not been carried out before and provides new insights into the topic of paraseismic impacts on the scale of their interaction with natural earthquakes. Mining tremor data was obtained from the mine’s seismological department. The seismic tremor data, on the other hand, was downloaded via the publicly available ESM (Engineering Strong- Motion Database).
Go to article

Authors and Affiliations

Janusz Rusek
1
ORCID: ORCID
Leszek Słowik
2
ORCID: ORCID
Krzysztof Tajduś
1
ORCID: ORCID

  1. AGH University of Krakow al. Adama Mickiewicza 30, 30-059 Krakow, Poland
  2. ITB Building Research Institute ul. Filtrowa 1, 00-611 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The transport pipeline of lifting the underwater minerals to the surface of the water onto the ship during the movement of the vessel takes in the water a curved deformed shape. Analysis of the state of stability of the pipeline showed that if the flow velocity of fluid in the pipeline exceeds a certain critical value Vkr, then its small random deviations from the equilibrium position may develop into deviations of large amplitude. The cause of instability is the presence of the centrifugal force of the moving fluid mass, which occurs in places of curvature of the axis of the pipeline and seeks to increase this curvature when the ends of the pipeline are fixed. When the critical flow velocity is reached, the internal force factors become unable to compensate for the action of centrifugal force, as a result of that a loss of stability occurs. Equations describing this dynamic state of the pipeline are presented in the article.
Go to article

Bibliography

[1] Benjamin T .B. Dynamic of a system of articulated pipes conveying fluid. I Theory. Proc. Royal Soc. 261, 457-486 (1961), II Experiment, 487-99.
[2] Chung J .S., Bao-Rang Cheng, Huttelmaier H .P. Three-Dimensional Coupled Responses of a Vertical Deep-Ocean Pipe: Part II. Excitation at Pipe Top and External Torsion, International Journal of Offshore and Polar Engineering 4, 4, December 1994 (ISSN 1053-5381).
[3] Goman O.G., Kirichenko E.A., Vishnyak E.A. Calculation of hydrodynamic loads on the elements of submersible structures of deep-water slurry pipelines. System Technologies: A collection of scientific papers – Dnipropetrovsk: RVKIA Ukraine 8, 17-23 (1999) [in Russian].
[4] Gregory R .W., Paidoussis M .P. Unstable oscillation of turbular cantilevers, conveying fluid. I Theory. Proc. of the Royal Soc., London, Ser. A, 293, 528-542 (1966).
[5] Handelman H.M. Quart. Appl. Math. 13, 326-334 (1955).
[6] Kirichenko E.A. Possible cases of simplification of the system of equations of oscillations of deep-water slurry pipelines in a flat formulation. Mining, electromechanics and automatics: A collection of scientific papers – Dnipropetrovsk: RVKNGA of Ukraine 4, 137-142 (1999) [in Russian].
[7] Long R.H. Jr. Experimental and theoretical study of transverse vibration of a tube containing flowing fluid. J. App. Mech. 22, 1, 65-68 (1955).
[8] Niordson F .I.N. Vibrations of cylindrical tube containing flowing fluid. Trans. of the Royal Inst. of Tech., Stockholm, Sweden, 1953, No.73. 392
[9] Szelangiewicz T., Żelazny K., Buczkowski R., Computer simulations of deformations and tensions in the pipelines of hydraulic lifting systems, Scientific Journals of the Maritime University of Szczecin – Zeszyty Naukowe Akademii Morskiej w Szczecinie 52 (124), 37-44 (2017). DOI : https://doi.org/10.17402/243
[10] Yao Nijun, Cao Bin, Xia Jianxin, Pressure loss of flexible hose in deep-sea mining system. 18th International Conference on TRANSPORT AND SEDIMENTATION OF SOLID PARTICLES 11-15 September 2017, Prague, Czech Republic. ISBN 978-83-7717-269-8.
[11] Yu Hong-yun, Liu Shao-jun, Dynamics of vertical pipe in deep-ocean mining system, J. Cent. South Univ. Technol. (2007) 04-0552-05. DOI : https://doi.org/10.1007/s11771-007-0106-0
Go to article

Authors and Affiliations

Jerzy Sobota
1
ORCID: ORCID
Xia Jianxin
2
ORCID: ORCID
Evgeniy Kirichenko
3
ORCID: ORCID

  1. Wrocław University of E nvironmental and Life Sciences, Poland
  2. Minzu University of China, Beijing, China
  3. Mining University, Dnipropetrovsk, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Geographic trajectory of a pipeline is important information for pipeline maintenance and leak detection. Although accurate trajectory of a ground pipeline usually can be directly measured by using global positioning system technology, it is much difficult to determine trajectory for an underground pipeline where global positioning system signal cannot be received. In this paper, a new method to determine trajectory for an underground pipeline by using a pipeline inspection robot is proposed. The robot is equipped with a low-cost inertial measurement unit and odometers. The kinematic model, measurement model and error propagation model are established for estimating position, velocity and attitude of the robot. The path reconstruction algorithm for the robot is proposed to improve accuracy of trajectory determination based on pipeline features. The experiment is given to illustrate that the position errors of the proposed method are less than 40% of that of the standard extended Kalman filter.
Go to article

Bibliography

[1] Liu, Z.,&Kleiner,Y. (2013). State of the art reviewof the inspection technologies for condition assessment of water pipes. Measurement, 46(1), 1–15. https://doi.org/10.1016/j.measurement.2012.05.032
[2] Kishawy, H. A., & Gabbar, H. A. (2010). Review of pipeline integrity management practices. International Journal of Pressure Vessels and Piping, 87(7), 373–380. https://doi.org/10.1016/ https://j.ijpvp.2010.04.003
[3] Zhang, T.,Wang, X., Chen, Y., Shuai, Y., Ullah, Z., Ju, H., & Zhao, Y. (2019). Geomagnetic detection method for pipeline defects based on ceemdan and WEP-TEO. Metrology and Measurement Systems, 26(2), 345–361. https://doi.org/10.24425/mms.2019.128363
[4] Ju, H.,Wang, X., Zhang, T., Zhao, Y., & Ullah, Z. (2019). Defect recognition of buried pipeline based on approximate entropy and variational mode decomposition. Metrology and Measurement Systems, 26(4), 735–755. https://doi.org/10.24425/mms.2019.129587
[5] Piao, G., Guo, J., Hu, T.,&Deng, Y. (2019). High-sensitivity real-time tracking system for high-speed pipeline inspection gauge. Sensors, 19(3), 731. https://doi.org/10.3390/s19030731
[6] De Araújo, R. P., De Freitas, V. C. G., De Lima, G. F., Salazar, A. O., Neto, A. D. D., & Maitelli, A. L. (2018). Pipeline inspection gauge’s velocity simulation based on pressure differential using artificial neural networks. Sensors, 18(9), 3072. https://doi.org/10.3390/s18093072
[7] Chowdhury, M. S., & Abdel-Hafez, M. F. (2016). Pipeline inspection gauge position estimation using inertial measurement unit, odometer, and a set of reference stations. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B: Mechanical Engineering, 2(2), 021001-1-10. https://doi.org/10.1115/1.4030945
[8] Coramik, M., & Ege, Y. (2017). Discontinuity inspection in pipelines: a comparison review. Measurement, 111, 359–373. https://doi.org/10.1016/j.measurement.2017.07.058
[9] Idroas, M., Abd Aziz, M. F. A., Zakaria, Z., & Ibrahim, M. N. (2019). Imaging of pipeline irregularities using a PIG system based on reflection mode ultrasonic sensors. International Journal of Oil, Gas and Coal Technology, 20(2), 212–223. https://doi.org/10.1504/IJOGCT.2019.097449
[10] Li, Z., Wang, J., Li, B., & Gao, J. (2014). GPS/INS/Odometer integrated system using fuzzy neural network for land vehicle navigation. Journal of Navigation, 67(6), 967–983. https://doi.org/ 10.1017/S0373463314000307
[11] Jiang, Q., Wu, W., Jiang, M., & Li, Y. (2017). A new filtering and smoothing algorithm for railway track surveying based on landmark and IMU/odometer. Sensors, 17(6), 1438. https://doi.org/ 10.3390/s17061438
[12] Georgy, J., Karamat, T., Iqbal, U., & Noureldin, A. (2011). Enhanced MEMS-IMU/odometer/GPS integration using mixture particle filter. GPS Solutions, 15(3), 239–252. https://doi.org/10.1007/s10291-010-0186-4
[13] Zhao, Y. (2015) Cubature plus extended hybrid Kalman filtering method and its application in PPP/IMU tightly coupled navigation systems. IEEE Sensors Journal, 15(12), 6973–6985. https://doi.org/10.1109/JSEN.2015.2469105
[14] Guan, L., Cong, X., Zhang, Q., Liu, F., Gao, Y., An, W., & Noureldin, A. (2020). A comprehensive review of micro-inertial measurement unit based intelligent PIG multi-sensor fusion technologies for small-diameter pipeline surveying. Micromachines, 11(9), 840. https://doi.org/10.3390/mi11090840
[15] Wang, L., Wang, W., Zhang, Q., & Gao, P. (2014). Self-calibration method based on navigation in high-precision inertial navigation system with fiber optic gyro. Optical Engineering, 53(6), 064103. https://doi.org/10.1117/1.OE.53.6.064103
[16] Usarek, Z., &Warnke, K. (2017). Inspection of gas pipelines using magnetic flux leakage technology. Advances in Materials Science, 17(3), 37–45. https://doi.org/10.1515/adms-2017-0014
[17] Sasani, S., Asgari, J., & Amiri-Simkooei, A. R. (2016). Improving MEMS-IMU/GPS integrated systems for land vehicle navigation applications. GPS solutions, 20(1), 89–100. https://doi.org/10.1007/s10291-015-0471-3
[18] Hyun, D., Yang, H. S., Park, H. S., & Kim, H. J. (2010). Dead-reckoning sensor system and tracking algorithm for 3-D pipeline mapping. Mechatronics, 20(2), 213–223. https://doi.org/10.1016/ j.mechatronics.2009.11.009
[19] Lee, D. H., Moon, H., Koo, J. C., & Choi, H. R. (2013). Map building method for urban gas pipelines based on landmark detection. International Journal of Control, Automation, and Systems, 11(1), 127–135. https://doi.org/10.1007/s12555-012-0049-6
[20] Li, T., Zhang, H., Niu, X., & Gao, Z. (2017). Tightly-coupled integration of multi-GNSS singlefrequency RTK and MEMS-IMU for enhanced positioning performance. Sensors, 17(11), 2462. https://doi.org/10.3390/s17112462
[21] Sahli, H., & El-Sheimy, N. (2016). A novel method to enhance pipeline trajectory determination using pipeline junctions. Sensors, 16(4), 567. https://doi.org/10.3390/s16040567
[22] Guan, L., Cong, X., Sun, Y., Gao, Y., Iqbal, U., & Noureldin, A. (2017). Enhanced MEMS SINS aided pipeline surveying system by pipeline junction detection in small diameter pipeline, IFACPapersOnLine, 50(1), 3560–3565. https://doi.org/10.1016/j.ifacol.2017.08.962
[23] Crassidis, J. L., & Junkins, J. L. (2011). Optimal Estimation of Dynamic Systems. CRC press. https://doi.org/10.1201/b11154
[24] Noureldin, A., Karamat, T. B., & Georgy, J. (2012). Fundamentals of Inertial Navigation, Satellite- Based Positioning and their Integration. Springer Science & Business Media. https://doi.org/ 10.1007/978-3-642-30466-8
[25] Xu, L., Li, X. R., Duan, Z., & Lan, J. (2013). Modeling and state estimation for dynamic systems with linear equality constraints. IEEE Transactions on Signal Processing, 61(11), 2927–939. https://doi.org/10.1109/TSP.2013.2255045
Go to article

Authors and Affiliations

Shuo Zhang
1
Stevan Dubljevic
1

  1. University of Alberta, Department of Chemical & Materials Engineering, T6G 2R3 Edmonton, AB, Canada
Download PDF Download RIS Download Bibtex

Abstract

The aim of this article is to present the author’s opinion about possible underwater natural gas pipeline monitoring using Polish Navy resources. Due to the bathymetrical characteristics of the pipeline equatorials the high efficiency and safe for the deck operators systems are expected to support the bottom survey and gas line monitoring. Time and engaged resources reduction are crucial factors in this kind of mission together with high probability of possible dangerous objects detection. The paper describes main threats for the underwater transportation line as a state energetic independence vital object (supplies diversification). An example of a threat caused by lost unmanned platform technologies near Nord Stream was presented and analyzed as well. The rapid development of unmanned maritime technologies (aerial, surface and subsurface) observed in the last decade creates new possibilities in maritime security/surveillance applications. The Polish mine counter measures assets which were equipped with sophisticated AUV’s as a part of the Polish Navy modernization process (new minehunters Kormoran IInd class deployable). The presented autonomous underwater vehicles (AUV) are equipped with advanced sonars and create new possibilities in the issue of effective threats detection/classification/ identification and neutralization. The main advantages of such solutions were pointed in the article with the crucial one based on time reduction as well as human – deck operators threats constraints. The first successes in the operational use of unmanned systems were reached during the military exercises (historical ordnance disposal) conducted on historical mine laying areas. This creates good possibilities to train the unmanned system operators in live objects activity which improves skills and knowledge. Moreover, the double use applications of unmanned technologies both in defense and maritime security has been observed.

Go to article

Authors and Affiliations

Rafał Miętkiewicz
Download PDF Download RIS Download Bibtex

Abstract

The natural gas supply is used from Russia Federation as a political instrument in the geopolitical and territorial conflict with Ukraine. The effectiveness of Russian strategy towards Ukraine is due to the fact that power in Kiev is also exercised by the pro-Russian politicians and supported on the part of Ukrainian oligarchs. The two countries are interdependent in terms of energy by means of the existing gas infrastructure and long-term contracts, because Ukraine guarantees the Russian Federation the transit of natural gas to Europe through its system of transmission gas pipelines, and Russia pays for the transit and used to supply the agreed amount of gas to Ukraine. For the first time – in 2016 – Ukraine didn’t import natural gas directly from the Russia Federation. This article attempts to obtain an answer to the research question, whether Ukraine actually strives to diversify its natural gas supply. What part of this policy is the Ukrainian political instrument in terms of Russia, and what part is the real political objective? Especially in the context of the gas contract between both States, ending in 2019. What role will be played the underground gas storage in the geopolitical struggle? Despite Nord Stream II the Russian Federation still needs the Ukrainian pipelines to fulfill contractual obligations in gas supplies to Europe. What are the strategic goals of the energy policy of Ukraine and Russia? The geopolitical as well as geo-economic theories will be applied. Moreover, a factor analysis as well as a decision-making analysis will be used. The political analysis method and the forecasting technique are applied to obtain, not only theoretical, but also practical input.

Go to article

Authors and Affiliations

Mariusz Ruszel
Download PDF Download RIS Download Bibtex

Abstract

The paper is a summary of a project aimed at identifying and eliminating or minimizing the causes of frequent failures of the Krakow water supply network related to corrosion damage. The paper presents the method of searching for factors responsible for frequent corrosion damage. There were taken into account several factors that may destroy the pipes associated with corrosion processes, such as the composition of the water, aggressiveness of ground, or stray currents. The monitoring method of the corrosion processes applied to observe the condition of the water supply network was discussed. The study showed that the main problem appeared to be stray currents related to the electrical infrastructure widely present in a large city, such as a tram or railway network. To eliminate this threat, a cathodic protection system has been implemented to prevent further failures. There were also demonstrated results of research proving that the applied solutions are effective.
Go to article

Bibliography

[1] Zimoch, I. (2008). Reliability Analysis of Water Distribution Subsystem. Journal of KONBiN. 7(4), 307-326.
[2] Jażdżewska, A., Gruszka, M., Mazur, R., Orlikowski, J. & Banaś, J. (2020). Determination of the effect of environmental factors on the corrosion of water distribution system based on analysis of on-line corrosion monitoring results. Archives of Metallurgy and Materials. 65(1), 109-116.
[3] Orlikowski, J., Zielinski, A., Darowicki, K., Krakowiak, S., Zakowski, K., Slepski, P., Jazdzewska, A., Gruszka, M. & J. Banas (2016). Research on causes of corrosion in the municipal water supply system. Case Studies in Construction Materials. 4, 108-115.
[4] Zakowski, K., Darowicki, K., Orlikowski, J., Jazdzewska, A., Krakowiak, S., Gruszka, M., & Banas, J. (2016). Electrolytic corrosion of water pipeline system in the remote distance from stray currents - Case study. Case Studies in Construction Materials. 4, 116-124.
[5] Jazdzewska, A., Darowicki, K., Orlikowski, J., Jazdzewska, A., Krakowiak, S., Zakowski, K., Gruszka, M., & Banas, J. (2016). Critical analysis of laboratory measurements and monitoring system of water-pipe network corrosion-case study. Case Studies in Construction Materials. 4, 102-107.
[6] Loewenthal, R.E., Morrison, I. & Wentzel, M.C. (2004). Control of corrosion and aggression in drinking water systems. Water Science and Technology. 49(2), 9-18. DOI: https://doi.org/10.2166/wst.2004.0075
[7] Booth, G.H., Cooper, A.W., Cooper, P.M. & Wakerley, D.S. (1967). Criteria of Soil Aggressiveness Towards Buried Metals. I. Experimental Methods. British Corrosion Journal. 2(3), 104-108. DOI: https://doi.org/10.1179/000705967798326957
[8] Bertolini, L., Carsana, M. & Pedeferri, P. (2007). Corrosion behaviour of steel in concrete in the presence of stray current. Corrosion Science. 49(3), 1056-1068. DOI: https://doi.org/10.1016/j.corsci.2006.05.048
[9] Chen, Z., Koleva D. & van Breugel, K. (2017). A review on stray current-induced steel corrosion in infrastructure. Corrosion Reviews. 35(6), 397-423. DOI: https://doi.org/10.1515/corrrev-2017-0009
[10] Cui, G., Li, ZL., Yang, C. & Wang, M. (2016). The influence of DC stray current on pipeline corrosion. Petroleum Science. 13(1), 135-145. DOI: https://doi.org/10.1007/s12182-015-0064-3
[11] Memon, M. (2013). Understanding Stray Current Mitigation, Testing and Maintenance on DC Powered Rail Transit Systems. In Proceedings of the 2013 Joint Rail Conference. 2013 Joint Rail Conference, April 15-18, 2013. Knoxville, Tennessee, USA: ASME.
[12] Zhu, Q., Cao, A., Zaifend, W., Song, J. & Shengli, C. (2011). Stray current corrosion in buried pipeline. Anti-Corrosion Methods and Materials. 58(5), 234-237. DOI: https://doi.org/10.1108/00035591111167695
[13] M. Ormellese & A. Brenna (2017). Cathodic Protection and Prevention: Principles, Applications and Monitoring. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering.
[14] Peng, P., Zeng, X., Leng, Y., Yu, K. & Ni, Y. (2020). A New On-line Monitoring Method for Stray Current of DC Metro System. IEEJ Transactions on Electrical and Electronic Engineering. 15(10), 1482-1492.
[15] Yang, L. (2008). Techniques for Corrosion Monitoring. (2nd Ed.). USA: Woodhead Publishing.
[16] Banaś, J., Mazurkiewicz, B., Solarski W., Lelek-Borkowska, U. (2018). Development of the optimal corrosion monitoring system for inner surface of production tubing. In: J. Lubas (Ed.), Development of optimal concepts for the development of unconventional deposits (pp. 78-158). Kraków: Instytut Nafty i Gazu. (in polish)
[17] Scully, J.R. (2000). Polarization Resistance Method for Determination of Instantaneous Corrosion Rates. Corrosion. 56(2), 199-218.
[18] Yang, L., Pan, Y., Dunn, D.S. & Sridhar, N. (2005). RealTime Monitoring of Carbon Steel Corrosion in Crude Oil and Brine Mixtures using Coupled Multielectrode Sensors. In Corrosion 2005, April 2005 (05293). Houston, Texas.
[19] A.S. G01.05, ASTM G1 - 03(2017)e1 Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens, ASTM, 2017, pp. 9.
[20] E.S.E. 12954:2019, General principles of cathodic protection of buried or immersed onshore metallic structures, CEN, 2019, pp. 44.
[21] E.S.E. 50162:2004, Protection against corrosion by stray current from direct current systems, CEN, 2004, pp. 44.
[22] Evitts, R.W. & Kennell, G.F. (2018). Chapter 15 - Cathodic Protection. In M. Kutz (Edt.), Handbook of Environmental Degradation of Materials (3rd Ed.) (pp. 301-321). UK, USA: William Andrew Publishing.
[23] Peabody, A.W. (2018). Control of Pipeline Corrosion. NACE E-Book
[24] Riskin, J. (2008). Chapter 2 - Corrosion and Protection of Underground and Underwater Structures Attacked by Stray Currents. In: J. Riskin (Edt.), Electrocorrosion and Protection of Metals (pp. 23-35). Amsterdam: Elsevier.
Go to article

Authors and Affiliations

U. Lelek-Borkowska
1
M. Gruszka
2
J. Banaś
1

  1. AGH University of Science and Technology, Reymonta 23, 30-059 Krakow, Poland
  2. WMK S.A., Senatorska 1, 30-106 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the article the effects of backfilling an underground, flexible pipeline, using natural materials (ground backfill) and modified materials, so called Lightweight Backfilling Materials (LBMs) were analyzed. These materials, thanks their lower density, have a positive effect on reducing the loads on the underground pipeline and, consequently, reducing deformations and stresses in its wall. LBMs include lightweight expanded clay aggregates, recycled tire chips used directly in the trench or mixed with the soil, foam concrete, foam glass (granules or plates), and expanded polystyrene, embedded in the ground in the form of blocks. The assessment of the effects of modifying the backfill of the underground pipeline was carried out by means of multi-variant numerical analysis in which models of the pipe-soil system in a plane strain state (2D model) were tested. In these models PEHD pipes were represented, with differential of their diameter (DN315, DN600) and stiffness (SDR), as well as trenches of various shapes (trench with vertical walls and with sloping walls). In the numerical calculations, two variants of trench filling were analyzed: full filling with soil and filling with selected LBMs (expanded clay aggregates, expanded polystyrene, tire chips mixed with soil) in layers separated in the backfill. The results of numerical calculations for particular variants of the models were analyzed in terms of the distribution of vertical displacements and stresses in the soil and pipe deformation. The received pipe deflections and circumferential stresses in their wall were related to the permissible values for PEHD pipes.
Go to article

Authors and Affiliations

Barbara Kliszczewicz
1
ORCID: ORCID

  1. Silesian University of Technology, Faculty of Civil Engineering, Akademicka 5,44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The work presented in the paper concerns a very important problem of searching for string alignments. The authors show that the problem of a genome pattern alignment could be interpreted and defined as a measuring task, where the distance between two (or more) patterns is investigated. The problem originates from modern computation biology. Hardware-based implementations have been driving out software solutions in the field recently. The complex programmable devices have become very commonly applied. The paper introduces a new, optimized approach based on the Smith-Waterman dynamic programming algorithm. The original algorithm is modified in order to simplify data-path processing and take advantage of the properties offered by FPGA devices. The results obtained with the proposed methodology allow to reduce the size of the functional block and radically speed up the processing time. This approach is very competitive compared with other related works.

Go to article

Authors and Affiliations

Andrzej Pułka
Adam Milik
Download PDF Download RIS Download Bibtex

Abstract

The western embankment of the Żerań Canal is an area of exceptional natural, cultural and recreational qualities. This site is also the location of the planned construction of a high pressure gas pipeline supplying Żerań Power Plant, which is a strategic undertaking for the north-eastern Warsaw. The study done at the Department of Landscape Architecture of the WULS-SGGW was aimed at determining values of natural and landscape resources and elaboration of the concept of site’s new development after construction of the gas pipeline.
Go to article

Authors and Affiliations

Jan Łukaszewicz
Beata Fortuna-Antoszkiewicz
Elżbieta Myjak-Sokołowska
Jakub Botwina
Piotr Wiśniewski
Download PDF Download RIS Download Bibtex

Abstract

The rheological behaviour of cemented paste backfill (CPB) has an important influence on the stability of its transportation in pipelines. In the present study, the time-dependent rheological behaviour of CPB was investigated to elucidate the effects of time and solid content. Experimental results showed that when CPB is subjected to a constant shear rate, the shear stress gradually decreases with time before finally stabilis ing. When the solid content was 60%~62%, a liquid network structure was the main factor that influenced the thixotropy of CPB, and the solid content had less influence. When the solid content was 64%~66%, a floc network structure was the main factor that influenced the thixotropy of CPB, and the solid content had a more significant influence on the thixotropy than the shear rate. The initial structural stability of CPB increased with the solid content, and this relationship can be described by a power function. Based on the experimental results, a calculation model of pipeline resistance considering thixotropy was proposed. The model was validated by using industrial experimental data. The current study can serve as a design reference for CPB pipeline transportation.
Go to article

Authors and Affiliations

Yingjie Chang
1
ORCID: ORCID
Youzhi Zhang
1
ORCID: ORCID
Deqing Gan
1
ORCID: ORCID
Xinyi Wang
1
ORCID: ORCID
Shuangcheng Du
1
ORCID: ORCID

  1. North China University of Science and Technology, College of Mining Engineering, China
Download PDF Download RIS Download Bibtex

Abstract

Industrial size pipe loop tests were conducted to determine the effect of paste mass concentration, cement content, conveying pipe diameter and conveying volumetric flow rate, on the pipeline pressure loss of paste slurry. The tests were conducted to determine the pressure losses in the backfill system at a Copper Mines major ore body. Results show that the pressure loss of paste slurry increases with the increase in mass concentration, and when the mass concentration exceeds 70%, the pressure loss will increase sharply and would be an exponential function of paste mass concentration; as the cement content increases, the pressure loss would decrease at first and then increase with the maximum pressure loss at 11% cement content; the pressure loss increases with the increase in conveying the volumetric flow rate accordingly, while the growth rate of pressure loss will increase after the volumetric flow rate exceeds 50 m 3/h; the pressure loss of paste slurry decreases sharply with the increase in pipe diameter, i.e., the larger pipe diameter, the smaller pressure loss; lastly, the paste conveying parameters were determined as mass concentration of lower than 70% (pressure loss: 2.55 MPa/km), cement content of 5% to 11%, inside diameter of conveying pipe of 150 mm and the maximum allowable pipeline pressure of 6 MPa.
Go to article

Authors and Affiliations

Wei Sun
1
ORCID: ORCID
Minggui Jiang
1
ORCID: ORCID
Kai Fan
1
ORCID: ORCID
Zeng Liu
1
ORCID: ORCID

  1. Kunming University of Science and Technology, Faculty of Land Resources Engineering, Yunnan Key Laboratory of Sino-German Blue Mining and Utilization of Special Underground Space, China
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work is to examine the impact of the hydrogen blended natural gas on the linepack energy under emergency scenarios of the pipeline operation. Production of hydrogen from renewable energy sources through electrolysis and subsequently injecting it into the natural gas network, gives flexibility in power grid regulation and the energy storage. In this context, knowledge about the hydrogen percentage content, which can safely effect on materials in a long time steel pipeline service during transport of the hydrogen-natural gas mixture, is essential for operators of a transmission network. This paper first reviews the allowable content of hydrogen that can be blended with natural gas in existing pipeline systems, and then investigates the impact on linepack energy with both startup and shutdown of the compressors scenarios. In the latter case, an unsteady gas flow model is used. To avoid spurious oscillations in the solution domain, a flux limiter is applied for the numerical approximation. The GERG-2008 equation of state is used to calculate the physical properties. For the case study, a tree-topological high pressure gas network, which have been inservice for many years, is selected. The outcomes are valuable for pipeline operators to assess the security of supply.
Go to article

Authors and Affiliations

Maciej Witek
1
Ferdinand Uilhoorn
1

  1. Warsaw University of Technology, Department of Heating and Gas Systems, Nowowiejska 20, 00-653 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The head loss is a decrease in compressive height caused by friction and direction changes of flow at the sliced bend. This method expected to provide is easy, fast, and economical. The elements of influence are the velocity of flow, the num-ber of slices, average length of sliced walls, angle changes of the sliced, coefficient of friction, acceleration of gravity, and slope of the pipe. Equation for coefficient of head loss (Kb) is an analysis method for the head loss (hL) calculation. The analysis results that have obtained are the larger diameter of the pipe, and the more slices with a fixed discharge, the coefficient of hL becomes small. Conversely, if the diameter of the pipe is getting smaller, and the slice is getting less, then the coefficient of hL becomes bigger. This method, expected to give new knowledge in pipeline network applications, especially for the large diameter of pipelines.

Go to article

Authors and Affiliations

Moh Abduh
ORCID: ORCID
Suhardjono Suhardjono
Sumiadi Sumiadi
ORCID: ORCID
Very Dermawan
Download PDF Download RIS Download Bibtex

Abstract

The coarse-grained heat-affected zone specimens of X80 pipeline steel were produced by welding thermal simulation under different heat inputs of 10, 30, and 55 kJ/cm to study the effects of heat input on microstructure evolution and corrosion characterization. The corrosion resistance of coarse-grained heat-affected zones was poorer than that of base metal due to less homogenous in the former. For 10 kJ/cm coarse-grained heat-affected zone, the corrosion resistance was poorer than the others due to the more adsorption hydrogen around the needle-like martensite/austenite constituents and greater galvanic driving force between the needle-like martensite/austenite constituents and ferrite. In carbonate/bicarbonate solution, better corrosion resistance for coarse-grained heat-affected zones was obtained when the heat input is 30 kJ/cm, which can be attributed to the severe coarse martensite/austenite constituents for 55 kJ/cm coarse-grained heat-affected zone. In the H2S environment, the better corrosion resistance for coarse-grained heat-affected zone was obtained when the heat input is 55 kJ/cm, which can be attributed to the protective effect of corrosion products. In addition, the high content of M/A constituents for 30 kJ/cm CGHAZ was good for hydrogen adsorption, which was adverse to the corrosion resistance in acid environments.
Go to article

Authors and Affiliations

Xue-Mei Wang
1 2
ORCID: ORCID
Wei Zhao
1 2 3
ORCID: ORCID
Kai Chen
1 2
ORCID: ORCID
Zhen Li
1 2
ORCID: ORCID

  1. Qilu University of Technology (Shandong Academy of Sciences), School of Mechanical & Automotive Engineering, China
  2. Shandong Institute of Mechanical Design and Research, China
  3. School of Materials Science and Engineering, Tianjin University, China
Download PDF Download RIS Download Bibtex

Abstract

Pipeline welding is an integral part of oil and gas exploration industries. Often the welded joint failures were due to lack of weld quality, improper heat treatment and even poor workmanship. Further, the use of new material in pipeline industry puts focus on a better understanding of qualifying requirements of welding for reducing the failures in future. This necessitates the need for development and design of suitable welding fluxes for joining these materials. In this paper an attempt is made to study the effects of submerged arc welding fluxes on weldability as well as structural integrity issues in pipeline steels. Physicochemical and thermophysical properties of submerged arc fluxes widely affects the mechanical behaviour of pipeline steels. This paper presents an overview of the role of welding parameters, flux composition, cooling rate, slag behaviour and physicochemical properties of slag on final welded joint properties such as tensile strength, impact toughness etc. during submerged arc welding.
Go to article

Authors and Affiliations

Lochan Sharma
1 2
ORCID: ORCID
Rahul Chhibber
3
ORCID: ORCID

  1. Chandigarh University, Institute of Engineering, Mechanical Engineering Department, Mohali-140413, Punjab, India
  2. University Centre for Research & Development, Chandigarh University, Mohali-140413, Punjab, India
  3. MED, IIT Jodhpur, India
Download PDF Download RIS Download Bibtex

Abstract

The study aimed to examine the use of Geomagnetic Anomaly Detection (GAD) to locate the buried ferromagnetic pipeline defects without exposing them. However, the accuracy of GAD is limited by the background noise. In the present work, we propose an approximate entropy noise suppression (AENS) method based on Variational Mode Decomposition (VMD) for detection of pipeline defects. The proposed method is capable of reconstructing the magnetic field signals and extracting weak anomaly signals that are submerged in the background noise, which was employed to construct an effective detector of anomalous signals. The internal parameters of VMD were optimized by the Scale–Space algorithm, and their anti-noise performance was compared. The results show that the proposed method can remove the background noise in high-noise background geomagnetic field environments. Experiments were carried out in our laboratory and evaluation results of inspection data were analysed; the feasibility of GAD is validated when used in the application to detection of buried pipeline defects.

Go to article

Authors and Affiliations

Haiyang Ju
Xinhua Wang
Tao Zhang
Yizhen Zhao
Zia Ullah

This page uses 'cookies'. Learn more