Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Plant viruses create many changes in the morphology of the plant cell once the infection process has begun. This paper describes and compares the ultrastructural changes induced in maize cells by two isolates of Maize dwarfmosaic virus (MDMV), Spanish (MDMV-Sp) and Polish (MDMV-P), and one isolate of Sugarcane mosaic virus (SCMV) at 10 and 42 days post-inoculation: the concentration and arrangement of virus particles, inclusion bodies associated with infection, and other cytological alterations. The most important difference between maize cells infected with MDMV isolates and with SCMV-P1 was in the form of cytoplasmic cylindrical inclusions. In cells infected with MDMV only typical inclusions such as pinwheels and scrolls were observed, but laminar aggregates were also present in SCMV-infected cells. No virus particles were found in plant cell organelles. Specific virion arrangements occurred in cells infected with MDMV-Sp and SCMV. The most interesting new finding was of specific amorphous inclusions in the cytoplasm of MDMV-Sp-infected cells, which clearly differentiated the two MDMV isolates studied.

Go to article

Authors and Affiliations

Lidia Zielińska
Małgorzata Jeżewska
Katarzyna Trzmiel
Download PDF Download RIS Download Bibtex

Abstract

Plant viruses cause crop losses in agronomically and economically important crops, making global food security a challenge. Although traditional plant breeding has been effective in controlling plant viral diseases, it is unlikely to solve the problems associated with the frequent emergence of new and more virulent virus species or strains. As a result, there is an urgent need to develop alternative virus control strategies that can be used to more easily contain viral diseases. A better understanding of plant defence mechanisms will open up new avenues for research into plant- pathogen interactions and the development of broad-spectrum virus resistance.
The scientific literature was evaluated and structured in this review, and the results of the reliability of the methods of analysis used were filtered. As a result, we described the molecular mechanisms by which viruses interact with host plant cells.
To develop an effective strategy for the control of plant pathogens with a significant intensity on the agricultural market, clear and standardised recommendations are required. The current review will provide key insights into the molecular underpinnings underlying the coordination of plant disease resistance, such as main classes of resistance genes, RNA interference, and the RNA-mediated adaptive immune system of bacteria and archaea – clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated Cas proteins – CRISPR/Cas.
Future issues related to resistance to plant viral diseases will largely depend on integrated research to transfer fundamental knowledge to applied problems, bridging the gap between laboratory and field work.
Go to article

Authors and Affiliations

Nurgul Iksat
1
ORCID: ORCID
Zhaksylyk Masalimov
1
ORCID: ORCID
Rustem Omarov
1
ORCID: ORCID

  1. L.N. Gumilyov Eurasian National University, Faculty of Natural Sciences, Satbayeva St. 2, Astana 010000, Kazakhstan

This page uses 'cookies'. Learn more