Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The most important and the most frequently used plastics are polyethylene (PE) and polypropylene (PP). They are characterised with high heating values (approximately 40 MJ/kg). Moreover, their chemical composition, based mainly on carbon and hydrogen, allows to use them in industrial processes. One of the methods of utilisation of plastic waste can be its use in the metallurgical industry. This paper presents results of thermal decomposition of waste PE/PP. Chemical and thermal analysis (TG) of studied wastes was carried out. Evolved gaseous products from the decomposition of wastes were indentified using mass spectrometry (TG-MS). This paper also presents an application of plastic wastes as supplemental fuel in blast furnace processes (as a substitute for coke) and as an addition in processes of coking coal.

Go to article

Authors and Affiliations

Monika Kuźnia
Aneta Magdziarz
Download PDF Download RIS Download Bibtex

Abstract

Many researchers in the developed countries have been intensively seeking effective methods of plastic recycling over the past years. Those techniques are necessary to protect our natural environment and save non-renewable resources. This paper presents the concept of an electrostatic separator designed as a test bench dedicated to the separation of mixed plastic waste from the automotive industry. According to the current policy of the European Union on the recycling process of the automotive industry, all these waste materials must be recycled further for re-entering into the life cycle (according to the circular economy). In this paper, the proposed concept and design of the test bench were offered the feasibility to conduct research and technological tests of the electrostatic separation process of mixed plastics. The designed test bench facilitated assessing the impact of positions of high-voltage electrodes, the value and polarity of the high voltage, the variable speed of feeders and drums, and also triboelectrification parameters (like time and intensity) on the process, among others. A specialized computer vision system has been proposed and developed to enable quick and reliable evaluation of the impact of process parameters on the efficiency of electrostatic separation. The preliminary results of the conducted tests indicated that the proposed innovative design of the research stand ensures high research potential, thanks to the high accuracy of mixed plastics in a short time. The results showed the significant impact of the corona electrode position and the value of the applied voltage on the separation process effectiveness. It can be concluded that the results confirmed the ability to determine optimally the values of the studied parameters, in terms of plastic separation effectiveness. This study showed that this concept of an electrostatic separator designed as a test bench dedicated for separation of mixed plastic waste can be widely applied in the recycling plastic industry.
Go to article

Bibliography

  1.  J. Flizikowski and M. Macko, “Competitive design of shredder for plastic in recycling”, Tools And Methods Of Competitive Engineering 1(2), 1147–1148 (2004).
  2.  M. Macko, K. Tyszczuk, G. Śmigielski, J. Flizikowski, and A. Mroziński, “The use of CAD applications in the design of shredders for polymers”, MATEC Web of Conferences 157, 02027 (2018), doi: 10.1051/matecconf/201815702027.
  3.  D. Czarnecka-Komorowska and K. Wiszumirska, “Sustainability design of plastic packaging for the Circular Economy”, Polimery 65(1), 8–17 (2020), doi: 10.14314/polimery.2020.1.2.
  4.  D. Czarnecka-Komorowska, K. Wiszumirska, and T. Garbacz, “Films LDPE/LLDPE made from post–consumer plastics: processing, structure, mechanical properties”, Adv. Sci. Technol. Res. J. 12(3), 134–142 (2018).
  5.  Directive 2000/53/EC of the European Parliament and of the Council of 18 September 2000 on end-of life vehicles – Commission Statements, 2020.
  6.  End-of-life vehicle statistics – Eurostat. [Online] https://ec.europa.eu/eurostat/statistics-explained/index.php?title=End-of-life_vehicle_ statistics (accessed Feb. 26, 2020).
  7.  M. Macko, Z. Szczepanski, E. Mikolajewska, J. Nowak, and D. Mikolajewski, “Repository of 3D images for education and everyday clinical practice purposes”, Bio-Algorithms Med-Syst. 13(2), 111–116 (2017).
  8.  J. Kopowski, I. Rojek, D. Mikołajewski, and M. Macko, “3D printed hand exoskeleton-own concept”, in Advances in manufacturing II, pp. 298–306, Springer, 2019.
  9.  G. Dodbiba and T. Fujita, “Progress in separating plastic materials for recycling”, Phys. Sep. Sci. Eng. 13(3–4), 165–182 (2004).
  10.  P. Krawiec, L. Różański, D. Czarnecka-Komorowska, and Ł. Warguła, “Evaluation of the thermal stability and surface characteristics of thermoplastic polyurethane V-Belt”, Materials 13(7), 1502 (2020).
  11.  S.A. Pradeep, R.K. Iyer, H. Kazan, and S. Pilla, “Automotive applications of plastics: past, present, and future”, in Applied Plastics Engineering Handbook, 651–673, Elsevier, 2017.
  12.  X. Yang, X. Liu, L. Song, C. Y. Lv, and X. Cheng, “Study on the separators for plastic wastes processing”, Procedia Eng. 174, 497–503 (2017).
  13.  S. Serranti and G. Bonifazi, “Techniques for separation of plastic wastes”, in Use of Recycled Plastics in Eco-efficient Concrete, pp. 9–37, Elsevier, 2019.
  14.  K.C. Lai, S.K. Lim, P.C. Teh, and K.H. Yeap, “An artificial neural network approach to predicting electrostatic separation performance for food waste recovery”, Pol. J. Environ. Stud. 26(4), 1921–1926 (2017), doi: 10.15244/pjoes/68963.
  15.  J. Wang, M. de Wit, R. M. Boom, and M.A.I. Schutyser, “Charging and separation behavior of gluten–starch mixtures assessed with a custom-built electrostatic separator”, Sep. Purif. Technol. 152, 164–171 (2015), doi: 10.1016/j.seppur.2015.08.025.
  16.  S. Tabtabaei, D. Konakbayeva, A. R. Rajabzadeh, and R.L. Legge, “Functional properties of navy bean (Phaseolus vulgaris) protein concentrates obtained by pneumatic tribo-electrostatic separation”, Food Chem. 283, 101–110 (2019), doi: 10.1016/j.foodchem.2019.01.031.
  17.  J. Wang, J. Zhao, M. de Wit, R.M. Boom, and M.A.I. Schutyser, “Lupine protein enrichment by milling and electrostatic separation”, Innovative Food Sci. Emerg. Technol. 33, 596–602 (2016), doi: 10.1016/j.ifset.2015.12.020.
  18.  A. Iuga, L. Calin, V. Neamtu, A. Mihalcioiu, and L. Dascalescu, “Tribocharging of plastics granulates in a fluidized bed device”, J. Electrostat. 63(6), 937–942 (2005), doi: 10.1016/j.elstat.2005.03.064.
  19.  L. Calin et al., “Tribocharging of Granular Plastic Mixtures in View of Electrostatic Separation”, IEEE Trans. Ind. Appl. 44(4), 1045–1051 (2008), doi: 10.1109/TIA.2008.926689.
  20.  M. Żenkiewicz, T. Żuk, and J. Pietraszek, “Modeling electrostatic separation of mixtures of poly(ε-caprolactone) with poly(vinyl chloride) or poly(ethylene terephthalate)”, Przem. Chem. 95(9), 1687–1692 (2016), doi: 10.15199/62.2016.9.6.
  21.  A. Cieśla, M. Skowron, and P. Syrek, “Elektryzacja ziaren węgla metodą tryboelektryczną”, Przegląd Elektrotechniczny, 1(1), 129–132 (2017), doi: 10.15199/48.2017.01.31.
  22.  H. Lu, J. Li, J. Guo, and Z. Xu, “Movement behavior in electrostatic separation: Recycling of metal materials from waste printed circuit board”, J. Mater. Process. Technol. 197(1), 101–108 (2008), doi: 10.1016/j.jmatprotec.2007.06.004.
  23.  T. Dziubak, “Experimental research on separation efficiency of aerosol particles in vortex tube separators with electric field”, Bull. Pol. Acad. Sci. Tech. Sci. 68(3), 503–516 (2020).
  24.  L. Dascalescu et al., “Factors that influence the efficiency of a fluidized-bed-type tribo-electrostatic separator for mixed granular plastics”, J. Phys. Conf. Ser. 301, 012066 (2011), doi: 10.1088/1742-6596/301/1/012066.
  25.  A. Cieśla, W. Kraszewski, M. Skowron, A. Surowiak, and P. Syrek, “Application of electrodynamic drum separator to electronic wastes separation”, Min. Res. Manag. 32(1), 155–174 (2016), doi: 10.1515/gospo-2016-0007.
  26.  H.M. Veit, T.R. Diehl, A.P. Salami, J.S. Rodrigues, A.M. Bernardes, and J. A. S. Tenório, “Utilization of magnetic and electrostatic separation in the recycling of printed circuit boards scrap”, Waste Manage. 25(1), 67–74 (2005), doi: 10.1016/j.wasman.2004.09.009.
  27.  U. Śliwa and M. Skowron, “Analysis of the electric field distribution in the drum separator of different electrode configuration”, IAPGOS, 6, 79–82 (2016).
  28.  L. Dascalescu, T. Zeghloul, and A. Iuga, “Chapter 4 – Electrostatic separation of metals and plastics from waste electrical and electronic equipment”, in WEEE Recycling, 75–106, 2016.
  29.  G. Bedeković, B. Salopek, and I. Sobota, “Electrostatic separation of PET/PVC mixture”, Tech. Gaz. 18(2), 261–266 (2011).
  30.  L. Calin, A. Mihalcioiu, A. Iuga, and L. Dascalescu, “Fluidized bed device for plastic granules triboelectrification”, Part. Sci. Technol. 25(2), 205–211 (2007), doi: 10.1080/02726350701257782.
  31.  T. Zeghloul, A. Mekhalef Benhafssa, G. Richard, K. Medles, and L. Dascalescu, “Effect of particle size on the tribo-aero-electrostatic separation of plastics”, J. Electrostat. 88, 24–28 (2017), doi: 10.1016/j.elstat.2016.12.003.
  32.  M. Mirkowska, M. Kratzer, C. Teichert, and H. Flachberger, “Principal factors of contact charging of minerals for a successful triboelectrostatic separation process – a review”, Berg Huettenmaenn Monatsh 161(8), 359–382 (2016), doi: 10.1007/s00501-016-0515-1.
  33.  M. Dötterl et al., “Electrostatic Separation”, in Ullmann’s Encyclopedia of Industrial Chemistry, pp. 1–35, Wiley-VCH Verlag GmbH & Co. KGaA, 2016, doi: 10.1002/14356007.b02_20.pub2.
  34.  M. Lungu, “Electrical separation of plastic materials using the triboelectric effect”, Miner. Eng. 17(1), 69–75 (2004).
  35.  A. Benabderrahmane, K. Medles, T. Zeghloul, P. Renoux, L. Dascalescu, and A. Parenty, “Triboelectrostatic separation of brominated f lame retardants polymers from mixed granular wastes”, in 2019 IEEE Industry Applications Society Annual Meeting, Baltimore, USA, 2019, pp. 1–4, doi: 10.1109/IAS.2019.8912375.
  36.  M. Żenkiewicz and T. Żuk, “Physical basis of tribocharging and electrostatic separation of plastics”, Polimery 59(4), 314–323 (2014), doi: 10.14314/polimery.2014.314.
  37.  Y. Wu, G.S.P. Castle, and I.I. Inculet, “Induction charging of granular materials in an electric field”, in Conference Record of the 2004 IEEE Industry Applications Conference. 39th IAS Annual Meeting, 2004, pp. 2366‒2372 vol. 4, doi: 10.1109/IAS.2004.1348806.
  38.  F. Portoghese, F. Berruti, and C. Briens, “Continuous on-line measurement of solid moisture content during fluidized bed drying using triboelectric probes”, Powder Technol. 181(2), 169–177 (2008), doi: 10.1016/j.powtec.2007.01.003.
  39.  J.-K. Lee, J.-H. Shin, and Y.-J. Hwang, “Triboelectrostatic separation system for separation of PVC and PS materials using fluidized bed tribocharger”, KSME Inter. J. 16(10), 1336–1345 (2002), doi: 10.1007/BF02983841.
  40.  L. Dascalescu et al., “Charges and forces on conductive particles in roll-type corona-electrostatic separators”, IEEE Trans. Ind. Appl. 31(5), 947–956, (1995), doi: 10.1109/28.464503.
  41.  Y.E. Prawatya, M.B. Neagoe, T. Zeghloul, and L. Dascalescu, “Surface-electric-potential characteristics of tribo- and corona-charged polymers: a comparative study”, IEEE Trans. Ind. Appl. 53(3), 2423–2431 (2017), doi: 10.1109/TIA.2017.2650145.
  42.  Y. Prawatya, B. Neagoe, T. Zeghloul, and L. Dascalescu, “Comparison between the surface-electric-potential characteristics of tribo- and corona- charged polymers”, in 2015 IEEE Industry Applications Society Annual Meeting, 2015, pp. 1–5, doi: 10.1109/IAS.2015.7356756.
  43.  M. Maammar, W. Aksa, M. F. Boukhoulda, S. Touhami, L. Dascalescu, and T. Zeghloul, “Modeling and simulation of nonconductive particles trajectories in a multifunctional electrostatic separator”, IEEE Trans. on Ind. Applicat. 55(5), 5244–5252 (2019), doi: 10.1109/ TIA.2019.2920805.
  44.  K. Flynn, A. Gupta, and F. Hrach, “Electrostatic Separation of Dry Granular Plant Based Food Materials – ST Equipment & Technology (STET)”, 2017. [Online]. Available: https://steqtech.com/electrostatic-separation-dry-granular-plant-based-food-materials/.
  45.  D. Czarnecka-Komorowska, K. Grześkowiak, P. Popielarski, M. Barczewski, K. Gawdzińska, and M. Popławski, “Polyethylene wax modified by organoclay bentonite used in the lost-wax casting process: processing-structure property relationships”, Materials 13(10), 2255 (2020).
  46.  Ł. Knypiński, “Optimal design of the rotor geometry of line-start permanent magnet synchronous motor using the bat algorithm”, Open Phys. 15(1), 965–970 (2017).
  47.  Ł. Knypiński, K. Pawełoszek, and Y. Le Menach, “Optimization of low-power line-start PM motor using gray wolf metaheuristic algorithm”, Energies 13(5), 1186 (2020), doi: 10.3390/en13051186.
  48.  I. Rojek and E. Dostatni, “Machine learning methods for optimal compatibility of materials in ecodesign”, Bull. Pol. Acad. Sci. Tech. Sci. 68(2), 199–206 (2020).
Go to article

Authors and Affiliations

Roman Regulski
1
ORCID: ORCID
Dorota Czarnecka-Komorowska
2
ORCID: ORCID
Cezary Jędryczka
3
ORCID: ORCID
Dariusz Sędziak
1
ORCID: ORCID
Dominik Rybarczyk
1
ORCID: ORCID
Krzysztof Netter
1
ORCID: ORCID
Mariusz Barański
3
ORCID: ORCID
Mateusz Barczewski
2
ORCID: ORCID

  1. Institute of Mechanical Technology, Poznan University of Technology, 60-965 Poznań, Poland
  2. Institute of Materials Technology, Poznan University of Technology, 60-965 Poznań, Poland
  3. Institute of Electrical Engineering and Electronics, Poznan University of Technology, 60-965 Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a numerical and experimental investigation of geometrical parameters of the blade for plastic bottle shredder was performed based on the Taguchi method in combination with a response surface method (RSM). Nowadays, plastic waste has become a major threat to the environment. Shredding, in which plastic waste is shredded into small bits, ready for transportation and further processing, is a crucial step in plastic recycling. Although many studies on plastic shredders were performed, there was still a need for more researches on the optimization of shredder blades. Hence, a numerical analysis was carried out to study the influences of the relevant geometrical parameters. Next, a two-step optimization process combining the Taguchi method and the RSM was utilized to define optimal parameters. The simulation results clearly confirmed that the current technique can triumph over the limitation of the Taguchi method, originated from a discrete optimization nature. The optimal blade was then fabricated and experimented, showing lower wear via measurement by an ICamScope® microscope. Hence, it can be clearly inferred from this investigation that the current optimization method is a simple, sufficient tool to be applied in such a traditional process without using any complicated algorithms or expensive software.
Go to article

Bibliography

[1] S. Alavi, S. Thomas, K.P. Sandeep, N. Kalarikkal, J. Varghese, and S.Yaragalla. Polymers for Packaging Applications. Apple Academic Press, 2014.
[2] A.W. Ayo, O.J. Olukunle, and D.J. Adelabu. Development of a waste plastic shredding machine. International Journal of Waste Resources, 7(2):1-4, 2017.
[3] P.K. Farayibi. Finite element analysis of plastic recycling machine designed for production of thin filament coil. Nigerian Journal of Technology, 36(2):411–420, 2017. doi: 10.4314/njt.v36i2.13.
[4] S. Reddy and T. Raju. Design and development of mini plastic shredder machine. IOP Conference Series: Materials Science and Engineering, 455:012119, 2018. doi: 10.1088/1757-899x/455/1/012119.
[5] D. Atadious and O.J. Oyejide. Design and construction of a plastic shredder machine for recycling and management of plastic wastes. International Journal of Scientific & Engineering Research, 9(5):1379–1385, 2018.
[6] Y.M. Sonkhaskar, A. Sahu, A. Choubey, A. Singh, and R. Singhal. Design and development of a plastic bottle crusher. International Journal of Engineering Research & Technology, 3(10), 297–300, 2014.
[7] M.I. Faiyyaj, M.R. Pradip, B.J. Dhanaji, D.P. Chandrashekhar, and J.S. Shivaji. Design and development of plastic shredding machine. International Journal of Engineering Technology Science and Research, 4(10):733–737, 2017.
[8] S.B. Satish, J.S. Sandeep, B. Sreehari, and Y.M. Sonkhaskar. Designing of a portable bottle crushing machine. International Journal for Scientific Research & Development, 4(7):891–893, 2016.
[9] N.D. Jadhav, A. Patil, H. Lokhande, and D. Turambe. Development of plastic bottle shredding machine. International Journal of Waste Resources, 08(2):1000336, 2018. doi: 10.4172/2252-5211.1000336.
[10] T.A. Olukunle. Design consideration of a plastic shredder in recycling processes. International Journal of Industrial and Manufacturing Engineering, 10(11):1838–1841, 2016. doi: 10.5281/zenodo.1127242.
[11] A. Tegegne, A. Tsegaye, E. Ambaye, and R. Mebrhatu. Development of dual shaft multi blade waste plastic shredder for recycling purpose. International Journal of Research and Scientific Innovation, 6(1):49–55, 2019.
[12] J.M.A. Jaff, D.A. Abdulrahman, Z.O. Ali, K.O. Ali, and M.H. Hassan. Design and fabrication recycling of plastic system. International Journal of Scientific & Engineering Research, 7(5):1471–1486, 2016.
[13] S.Yadav, S. Thite, N. Mandhare, A. Pachupate, and A. Manedeshmukh. Design and development of plastic shredding machine. Journal of Applied Science and Computations, 6(4):21–25, 2019.
[14] S. Ravi. Utilization of upgraded shredder blade and recycling the waste plastic and rubber tyre. International Conference on Industrial Engineering and Operations Management, pages 3208–3216, Paris, France, 26-27 July 2018.
[15] M.F. Nasr and K.A. Yehia. Stress analysis of a shredder blade for cutting waste plastics. Journal of International Society for Science and Engineering, 1(1):9–12, 2019. doi: 10.21608/jisse.2019.20292.1017.
[16] C. Pedraza-Yepes, M.A. Pelegrina-Romero, and G.J. Pertuz-Martinez. Analysis by means of the finite element method of the blades of a PET shredder machine with variation of material and geometry. Contemporary Engineering Sciences, 11(83):4113–4120, 2018. doi: 10.12988/ces.2018.88370.
[17] A. Ikpe and O. Ikechukwu. Design of used PET bottles crushing machine for small scale industrial applications. International Journal of Engineering Technologies, 3(3):157–168, 2017. doi: 10.19072/ijet.327166.
[18] N.Y. Mahmood. Prediction of the optimum tensile – shear strength through the experimental results of similar and dissimilar spot welding joint. Archive of Mechanical Engineering, 67(2):197–210, 2020. doi: 10.24425/ame.2020.131690.
[19] R. Świercz, D. Oniszczuk-Świercz, and L. Dąbrowski. Electrical discharge machining of difficult to cut materials. Archive of Mechanical Engineering, 65(4):461–476, 2018. doi: 10.24425/ame.2018.125437.
[20] T.K. Nguyen, C.J.Hwang, and B.-K. Lee. Numerical investigation of warpage in insert injection-molded lightweight hybrid products. International Journal of Precision Engineering and Manufacturing, 18(2):187–195, 2017. doi: 10.1007/s12541-017-0024-5.
[21] T.K. Nguyen and B.-K. Lee. Investigation of processing parameters in micro-thermoforming of micro-structured polystyrene film. Journal of Mechanical Science and Technology, 33(12):5669–5675, 2019. doi: 10.1007/s12206-019-1109-0.
[22] T.K. Nguyen, A.-D. Pham, M.Q. Chau, X.C. Nguyen, H.A.D. Pham, M.H. Pham, T.P. Nguyen, and H.S. Nguyen. Development and characterization of a thermoforming apparatus using axiomatic design theory and Taguchi method. Journal of Mechanical Engineering Research and Developments, 43(6):255–268, 2020.
[23] R.O. Ebewele. Polymer Science and Technology. 1st edition. CRC Press, Boca Raton, 2000. doi: 10.1201/9781420057805.
Go to article

Authors and Affiliations

Trieu Khoa Nguyen
1
ORCID: ORCID
Minh Quang Chau
1
ORCID: ORCID
The-Can Do
2
Anh-Duc Pham
2
ORCID: ORCID

  1. Faculty of Mechanical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam.
  2. Faculty of Mechanical Engineering, The University of Danang – University of Science and Technology, Da Nang City, Vietnam.
Download PDF Download RIS Download Bibtex

Abstract

Porous asphalt has excellent permeability and larger air voids. Due to the low stability strength of asphalt binder with aggregates, Malaysia uses porous asphalt roads for lightweight vehicle road transportation. Numerous studies indicate utilizing Recycled High-Density Polyethylene in porous asphalt road surface. As a result, it was utilised as an additional binder material to enhance the asphalt binder. The main purpose of this study is to investigate the stability of modified porous asphalt samples and evaluate the optimum percentage of HDPE plastic waste from 3%, 6% and 9%. The aggregates, asphalt properties, Marshall Parameters and waster absorption test are in comply with JKR Standard and PWD 2008. At 3% of plastic addition has improved the stability of porous asphalt specimens. Adding plastic waste as a binder helps strengthen asphalt binding.
Go to article

Authors and Affiliations

L.A. Sofri
1
ORCID: ORCID
D. Ganesan
2
ORCID: ORCID
M.M. Al B. Abdullah
3
ORCID: ORCID
Chee-Ming Chan
4
ORCID: ORCID
M.H. Osman
4
ORCID: ORCID
J. Garus
5
ORCID: ORCID
S. Garus
5
ORCID: ORCID

  1. Universiti Malaysia Perlis (UniMAP), Faculty of Civil Engineering Technology, Kompleks Pusat Pengajian Jejawi 3, 02600 Arau, Perlis, Malaysia; Universiti Malaysia Perlis (UniMAP), Centre of Excellence Geopolymer and Green Technology, (CEGeoGTech), 01000 Perlis, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Faculty of Civil Engineering Technology, Kompleks Pusat Pengajian Jejawi 3, 02600 Arau, Perlis, Malaysia
  3. Universiti Malaysia Perlis (UniMAP), Centre of Excellence Geopolymer and Green Technology, (CEGeoGTech), 01000 Perlis, Malaysia; Universiti Malaysia Perlis (UniMAP), Fac ult y of Chemical Engineering and Technology, 01000 Perlis, Malaysia
  4. Universiti Tun Hussein Onn, Fac ult y of Engineering Technology, Pagoh, Johor, Malaysia
  5. Częstochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Mechanics and Fu ndamentals of Machinery Design, 73 Dąbrowskiego Av., 42-201 Częstochowa, Poland

This page uses 'cookies'. Learn more