Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The use of phytoplankton as an indicator of water pollution is a promising tool for assessment of water quality. The purpose of this study was to determine whether diversity indices, including the species richness and diversity of phyto-plankton, could be used for reliable assessment of water quality in the Wadaslintang Reservoir in Indonesia. Surveys were conducted monthly at eight sites, from July 2019 to October 2019. Phytoplankton was collected during the day at 10:00 until approximately 15:00 in the euphotic zone. The parameters investigated were species richness and the abundance of phytoplankton, as well as water quality parameters listed in Government Regulation Number 82 of 2001. The level of pol-lution was represented biologically by the Shannon–Wiener diversity index and physicochemically by the STORET (stor-age and retrieval of water quality data) index. Moreover, the two indices were compared to determine whether a particular diversity index was more effective for assessment of this reservoir. The results showed that during the dry season, 22 taxa of phytoplankton were present, belonging to Cyanophyta, Chlorophyta, Chrysophyta, and Euglenophyta. During the wet season, 29 taxa were found, belonging to Cyanophyta, Chlorophyta, and Chrysophyta. Based on the Shannon-Wiener index and STORET index, water quality was better during the wet season than during the dry season. The results of water quality assessment using both indices were consistent, but the diversity index was a more sensitive indicator of pollution levels. Therefore, the Shannon–Wiener index is a useful tool for assessment of water quality in the Wadaslintang Reservoir.

Go to article

Authors and Affiliations

Agatha S. Piranti
Dwi N. Wibowo
Download PDF Download RIS Download Bibtex

Abstract

Investigations were carried out to evaluate the performance of a low heat rejection (LHR) diesel engine consisting of different versions, such as ceramic coated cylinder head engine-LHR-1-Air gap insulated piston and air gap insulated liner-LHR-2- and Ceramic coated cylinder head, air gap insulated piston and air gap insulated liner -LHR-3 with degrees of insulation with normal temperature condition of linseed oil with varied injection pressure. Performance parameters were determined at various magnitudes of brake mean effective pressure. Pollution levels of smoke and oxides of nitrogen (NOx) were recorded at the peak load operation of the engine. Combustion characteristics of the engine were measured with TDC (top dead centre) encoder, pressure transducer, console and special pressure-crank angle software package. Conventional engine (CE) showed deteriorated performance, while LHR engine showed improved performance at recommended injection timing of 27 degrees bTDC and recommend injection pressure of 190 bar with vegetable oil operation, when compared with CE with pure diesel operation. Peak brake thermal efficiency increased by 14%, smoke levels decreased by 10% and NOx levels increased by 30% with LHR engine at an injection pressure of 270 bar when compared with pure diesel operation on CE at manufacturer's recommended injection timing.

Go to article

Authors and Affiliations

M.V.S Murali Krishna
N. Janardhan
P.V.K. Murthy
P. Ushasri
S. Naga Sarada

This page uses 'cookies'. Learn more