Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Concrete is generally produced using materials such as crushed stone and river sand to the extent of about 80‒90% combined with cement and water. These materials are quarried from natural sources. Their depletion will cause strain on the environment. To prevent this, bottom ash produced at thermal power plants by burning of coal has been utilized in this investigation into making concrete. The experimental investigation presents the development of concrete containing lignite coal bottom ash as fine aggregate in various percentages of 25, 50, and 100. Compressive, split tensile, and flexural strength as part of mechanical properties; acid, sulphate attack, and sustainability under elevated temperature as part of durability properties, were determined. These properties were compared with that of normal concrete. It was concluded from this investigation that bottom ash to an extent of 25% can be substituted in place of river sand in the production of concrete.

Go to article

Authors and Affiliations

T.S. Thandavamoorthy
Download PDF Download RIS Download Bibtex

Abstract

The present study examines some durability aspects of ambient cured bottom ash geopolymer concrete (BA GPC) due to accelerated corrosion, sorptivity, and water absorption. The bottom ash geopolymer concrete was prepared with sodium based alkaline activators under ambient curing temperatures. The sodium hydroxide used concentration was 8M. The performance of BA GPC was compared with conventional concrete. The test results indicate that BA GPC developes a strong passive layer against chloride ion diffusion and provides better protection against corrosion. Both the initial and final rates of water absorption of BA GPC were about two times less than those of conventional concrete. The BA GPC significantly enhanced performance over equivalent grade conventional concrete (CC).

Go to article

Authors and Affiliations

R. Saravanakumar
V. Revathi

This page uses 'cookies'. Learn more