Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The pattern of pore water pressure dissipation from the one-dimensional consolidation test significantly affects the calculated value of the coefficient of consolidation. This paper discusses the interpretation methodology for laboratory dissipation data from the oedometer test with the pore water pressure measurements or Rowe cell test. In the analysis, the gradient-based algorithm for finding the optimal value of the coefficient of consolidation is used against experimental results, obtained for various fine-grained soils. The appropriate value of coefficient of consolidation is considered as one with the lowest associated error function, which evaluates fitness between the experimental and theoretical dissipation curves. Based on the experimental results, two different patterns of the pore water pressure dissipation are identified, and the saturation of the specimen was found to be the key factor in describing the change in the patterns. For the monotonically decreasing dissipation curve, an inflection point is identified. The values of degree of dissipation at the inflection point are close to the theoretical value of 53.4%.
Go to article

Authors and Affiliations

Bartłomiej Szczepan Olek
1
ORCID: ORCID

  1. Krakow University of Technology, Faculty of Civil Engineering, Warszawska 24, 31-155 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Several field and model tests have been conducted to investigate the impact of pile installation on bearing capacity. However, little is known about how piles behave during installation, how they interact with the surrounding soil, and how this affects sandy soil properties. This review paper investigates the effect of pile driving on surrounding sandy soil as it compacts sandy soil near to the pile. For this purpose, various related literature was studied based on the observation of the pile installation effect on earth pressure or lateral stress, relative density, and pore water pressure in the sandy soil. A change in the deformation and stress state of surrounding sandy soil due to pile driving was presented. The installation of fully displacement piles can lead to significant stresses and deformations in the surrounding sandy soil. This is one of the main causes of uncertainty in the design and analysis of pile foundations. According to this study, the sandy soil around the pile is compacted during pile driving, resulting in lateral and upward displacement. This leads to the densification effect of pile driving on loose sandy soil. Sandy soil improvement with driven piles depends on pile shape, installation method, and pile driving sequences. This study concludes that in addition to its advantages of transferring superstructure load to deep strata, the increased relative density of loose sand, the change in the horizontal stress, and the influence of compaction on the sandy soil parameters during pile driving should be considered during pile design and analysis.
Go to article

Authors and Affiliations

Worku Firomsa Kabeta
1
ORCID: ORCID

  1. Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

A fast reduction of a reservoir level may result in instability of an earth dam caused by the high pore water pressures that remain relatively high in the embankment. Moreover, the dissipation of the accumulated pore water pressures is highly dependent on the permeability of the materials used for the embankment and the storage characteristics of the reservoir. Therefore, in the design of embankment dams, the stability analysis under rapid drawdown loading conditions is an important design case. In this study, the influence of different permeability rates on dam stability under different cases of rapid drawdownwas investigated using the finite element method in SEEP/W and SLOPE/W of the GeoStudio with a case of the Lugoda dam in Ndembera catchment, Tanzania. The modeling process considers the time-dependent hydraulic conditions and the transient flow conditions using different water levels during rapid drawdown for evaluation of the factor of safety. From the 1m per day drawdown rate; the lowest minimum factor of safety value (0.90) was obtained from the 10 -7 m/s material permeability of the upstream zone of the dam. It means that, at a drawdown rate of 1m per day, there is a potential for failure of the embankment if the hydraulic conductivity value will be somewhere below 10 -6 m/s.
Go to article

Authors and Affiliations

Yelbek Utepov
1
ORCID: ORCID
Zbigniew Lechowicz
2
ORCID: ORCID
Askar Zhussupbekov
1
ORCID: ORCID
Zdzisław Skutnik
3
ORCID: ORCID
Aliya Aldungarova
4
ORCID: ORCID
Timoth Mkilima
1
ORCID: ORCID

  1. Department of Civil Engineering, L.N. Gumilyov Eurasian National University, 2 Satpayev Str., 010008 Nur-Sultan, Republic of Kazakhstan
  2. Institute of Civil Engineering, Warsaw University of Life Sciences, 166 Nowoursynowska Str., 02-787 Warsaw, Poland
  3. Institute of Civil Engineering,Warsaw University of Life Sciences, 166 Nowoursynowska Str., 02-787 Warsaw, Poland
  4. CSI Research&Lab, LLP, 010000 Nur-Sultan, Kazakhstan
Download PDF Download RIS Download Bibtex

Abstract

Slope Stability Analysis is one of the main aspects of Open-pit mine planning because the calculations regarding the stability of slopes are necessary to assess the stability of the open pit slopes together with the financial feasibility of the mining operations. This study was conducted to analyse the effect of groundwater on the shear strength properties of soft rock formations and determine the optimum overall slope angle for an open pit coal mine at Thar Coalfield, Pakistan. Computer modelling and analysis of the slope models were performed using Slide (v. 5.0) and Phase2 (v. 6.0) software. Integrated use of Limit Equilibrium based Probabilistic (LE-P) analysis and Finite Element Method (FEM) based shear strength reduction analysis was performed to determine the safe overall slope angle against circular failure. Several pit slope models were developed at different overall slope angles and pore-water pressure ratio (Ru) coefficients. Each model was initially analysed under dry conditions and then by incorporating the effect of pore-water pressure coefficients of Ru = 0.1, 0.2, and 0.3 (partially saturated); finally, the strata were considered to be fully saturated. It was concluded that at an overall slope angle of 29 degrees, the overall slope will remain stable under dry and saturated conditions for a critical safety factor of 1.3.
Go to article

Authors and Affiliations

Shafi Muhammad Pathan
1
ORCID: ORCID
Abdul Ghani Pathan
1
ORCID: ORCID
Fahad Irfan Siddiqui
1
ORCID: ORCID
Muhammad Burhan Memon
1
ORCID: ORCID
Mairaj Hyder Alias Aamir Soomro
1
ORCID: ORCID

  1. Mehran University of Engineering and Technology, Department of Mining Engineering, Jamshoro, Pakistan

This page uses 'cookies'. Learn more