Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Porous metals show not only extremely low density, but also excellent physical, mechanical and acoustic properties. In this study, Hastelloy powders prepared by gas atomization are used to manufacture 3D geometries of Hastelloy porous metal with above 90% porosity using electrostatic powder coating process. In order to control pore size and porosity, foam is sintered at 1200~1300°C and different powder coating amount. The pore properties are evaluated using SEM and Archimedes method. As powder coating amount and sintering temperature increased, porosity is decreased from 96.4 to 94.4%. And foam density is increased from 0.323 to 0.497 g/cm3 and pore size is decreased from 98 to 560 μm. When the sintering temperature is increased, foam thickness and strut thickness are decreased from 9.85 to 8.13mm and from 366 to 292 μm.

Go to article

Authors and Affiliations

Min-Jeong Lee
Yu-Jeong Yi
Hyeon-Ju Kim
Manho Park
Byoung-Kee Kim
Jung-Yeul Yun
Download PDF Download RIS Download Bibtex

Abstract

In this study, a flake-shaped metal powder was coated on a tube shaped pre-sintered 316L stainless steel support using a wet powder spraying process to fabricate a double pore structure, and the pore characteristics were analyzed according to coating time and tube rotation speed. The thickness of the coated layer was checked via optical microscopy, and porosity was measured using image analysis software. Air permeability was measured using a capillary flow porometer. As a result of the experiment, the optimal rotation speed of the support tube was established as 200 rpm. When the rotation speed was fixed, the coating thickness and the coating amount of the double pore structure increased as the coating time increased. The porosity of the double pore structure was increased due to the irregular arrangement of the flake-shaped powder. The air permeability of the double pore structure decreased with increasing fine pore layer thickness.
Go to article

Authors and Affiliations

Min-Jeong Lee
1 2
ORCID: ORCID
Yu-Jeong Yi
1 2
ORCID: ORCID
Hyeon-Ju Kim
1
ORCID: ORCID
Manho Park
3
ORCID: ORCID
Jungwoo Lee
2
ORCID: ORCID
Jung-Yeul Yun
1
ORCID: ORCID

  1. Korea Institute of Materials Science (KIMS), Metal Powder Department, Changwon, 51508, Republic of Korea
  2. Pusan National University, Department of Materials Science and Engineering, Busan, 46241, Republic of Korea
  3. R&D Center, ASFLOW Co. Ltd, Hwasung, 16648, Republic of Korea

This page uses 'cookies'. Learn more