Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Recently, attempts have been made to use porous metal as catalysts in a reactor for the hydrogen manufacturing process using steam methane reforming (SMR). This study manufactured Ni-Cr-Al based powder porous metal, stacked cubic form porous blocks, and investigated high temperature random stack creep property. To establish an environment similar to the actual situation, a random stack jig with a 1-inch diameter and height of 75 mm was used. The porous metal used for this study had an average pore size of ~1161 μm by rolling direction. The relative density of the powder porous metal was measured as 6.72%. A compression test performed at 1073K identified that the powder porous metal had high temperature (800°C) compressive strength of 0.76 MPa. A 800°C random stack creep test at 0.38 MPa measured a steady-state creep rate of 8.58×10–10 s–1, confirming outstanding high temperature creep properties. Compared to a single cubic powder porous metal with an identical stress ratio, this is a 1,000-times lower (better) steady-state creep rate. Based on the findings above, the reason of difference in creep properties between a single creep test and random stack creep test was discussed.

Go to article

Authors and Affiliations

Tae-Hoon Kang
Kyu-Sik Kim
Man-Ho Park
Kee-Ahn Lee
Download PDF Download RIS Download Bibtex

Abstract

Usually porous metals are known as relatively excellent characteristic such as large surface area, light, lower heat capacity, high toughness and permeability for exhaust gas filter, hydrogen reformer catalyst support. The Ni alloys have high corrosion resistance, heat resistance and chemical stability for high temperature applications. In this study, the Ni-based porous metals have been developed with Hastelloy powder by gas atomization and water atomization in order to find the effects of powder shape on porous metal. Each Hastelloy powder is pressed on disk shape of 2 mm thickness with 12 tons using uniaxial press machine. The specimens are sintered at various temperatures in high vacuum condition. The pore properties were evaluated using Porometer and microstructures were observed with SEM.

Go to article

Authors and Affiliations

Yu-Jeong Yi
Min-Jeong Lee
Hyeon-Ju Kim
Sangsun Yang
Manho Park
Byoung-Kee Kim
Jung-Yeul Yun
Download PDF Download RIS Download Bibtex

Abstract

The article describes the design of a proven technology for the production of metal foam and porous metal by the foundry. Porous metal formed by infiltrating liquid metal into a mould cavity appears to be the fastest and most economical method. However, even here we cannot do without the right production parameters. Based on the research, the production process was optimised and subsequently a functional sample of metal foam with an irregular internal structure - a filter - was produced. The copper alloy filter was cast into a gypsum mould using an evaporable model.
Furthermore, a functional sample of porous metal with a regular internal structure was produced - a heat exchanger. The aluminium alloy heat exchanger was cast into a green sand mould using preforms. Also, a porous metal casting with a regular internal structure was formed for use as an element in deformation zones. This aluminium alloy casting was made by the Lost Foam method. The aim is therefore to ensure the production of healthy castings, which would find use in the field of filtration of liquid metal or flue gases, in vehicles in the field of shock energy absorption and also in energy as a heat exchanger.
Go to article

Bibliography

[1] Lefebvre, L.P., Banhart, J. & Dunand, D. (2008). Porous metals and metallic foams: current status and recent developments. Advanced Engineering Materials. 10(9), 775-787.
[2] Banhart, J. (2001). Manufacture, characterisation and application of cellular metals and metal foams. Progress in Materials Science. 46(6), 559-632.
[3] Banhart, J. (2007). Metal Foams - from Fundamental Research to Applications [online], URL: < https://www.helmholtz-berlin.de/media/media/spezial/people/banhart/html/B-Conferences/b097_banhart2007.pdf>.
[4] Gaillard, Y., Dairon, J., & Fleuriot, M. (2011). Porous materials: innovations with many uses. Slévárenství. 11-12, roč. LIX, 374-378. (in Czech).
[5] Banhart, J. (2005). Aluminium foams for lighter vehicles. International Journal of Vehicle Design. 37, Nos. 2/3, 114-125. [online]. URL: < http://www.helmholtz-berlin.de/media/media/spezial/people/banhart/html/A-Journals/open/article/a082_banhart2005.pdf>.
[6] García-Moreno, F. Commercial Applications of Metal Foams: Their Properties and Production. [online]. URL: < http://www.mdpi.com/1996-1944/9/2/85/html>.
[7] Banhart, J. Metallic Foams II: properties and application [online]. URL: < http://materialsknowledge.org/docs/ Banhart-talk2.pdf>.
[8] Landolsi, M.W. (2016). Metal foam - an innovative material. [online]. URL: < https://conceptec.net/actualites/innovations/ 111-mousse-metallique-un-materiau-innovant>. (in Czech).
[9] Lulusoso. Composite cladding panel manufacturers [online]. URL: < http://www.lulusoso.com/products/ Composite-Cladding-Panel-Manufacturers.html>.
[10] Erg Materials and Aerospace; Duocel® Foam Cells. [online]. URL: < http://www.ergaerospace.com/products/ fuel-cells.html>.
[11] Kroupová, I., Lichý, P., Ličev, L., Hendrych, J. & Souček, K. (2018). Evaluation of properties of cast metal foams with irregular inner structure. Archives of Metallurgy and Materials. 63(4), 1845-1849. ISSN 1733-3490.
[12] Kroupova, I., Bednarova, V., Elbel, T. & Radkovsky, F. (2014). Proposal of method of removal of mould material from the fine structure of metallic foams used as filters. Archives of Metallurgy and Materials. 59(2), 727-730. ISSN 1733-3490.
[13] Yamada. Y., Shimojima, K., Sakaguchi, Y., Mabuchi, M., Nakamura, M., Asahina, T., Mukai, T., Kanahashi, H. & Higashi, K. (2000). Effects of heat treatment on compressive properties of AZ91 Mg and SG91A Al foams with open-cell structure. Materials Science and Engineering: A. 280(1), 225-228. DOI: https://doi.org/ 10.1016/S0921-5093(99)00671-1.
[14] Gawdzinska, K., Chybowski, L. & Przetakiewicz, W. (2017). Study of thermal properties of cast metal-ceramic composite foams. Archives of Metallurgy and Materials. 17(4), 47-50. ISSN 1897-3310.
[15] Haack, P.D., Butcher, R.P., Kim, T. & Lu, J.T. (2001). Novel lightweight metal foam heat exchangers. porvair fuel cell technology, Inc., Department of Engineering, University of Cambridge. January, [online]. URL: < https://www.researchgate.net/publication/267721239_Novel_Lightweight_Metal_Foam_Heat_Exchangers>.
[16] Radkovský, F., Merta, V. (2020). Use of numerical simulation in production of porous metal casting. Archives of Metallurgy and Materials. 54(2), 259-261. ISSN 1580-2949. DOI: 10.17222/mit.2019.145.
[17] Radkovský, F., Gebauer, M., Kroupová, I., Lichý, P. (2017). Metal foam as a heat exchanger. In METAL 2017, Conference proceedings, 26th Anniversary International Conference on Metallurgy and Materials, Tanger Ltd., Ostrava, 24. - 26. 5. 2017, Hotel Voroněž I, Brno.
[18] Lu, T.J., Stone, H.A. & Ashby, M.F. (1998). Heat transfer in open-cell metal foams. Acta Materialia. 46(10, 12) June, 3619-3635. DOI: https://doi.org/10.1016/S1359-6454(98) 00031-7
[19] Boomsma, K., Poulikakos, D. & Zwick, F. (2003). Metal foams as compact high performance heat exchangers. Mechanics of Materials, 35(12), 1161-1176. DOI: https://doi.org/10.1016/j.mechmat.2003.02.001.
[20] Hutter, C., Büchi, D., Zuber, V. & Rohr, R. (2011). Heat transfer in metal foams and designed porous media. Chemical Engineering Science. 66(17), 1 September 2011, 3806-3814. DOI: https://doi.org/10.1016/j.ces.2011.05.005
[21] Lichý, P., Elbel, T., Kroupová, I. & Radkovský, F. (2017). Preparation and evaluation of properties of cast metallic foams with regular inner structure. Archives of Metallurgy and Materials. 62(3), 1643-1646. ISSN 1733-3490. DOI: 10.1515/amm-2017-0251.
[22] Romanek, T. (2017). Manufacturing and Properties of Cast Metallic Foams with Regular Structure, Ostrava, Diploma thesis, VSB - Technical University of Ostrava, [online]. URL: http://www.ergaerospace.com/products/fuel-cells.htm>.
[23] Radkovský, F., Gebauer, M. & Merta, V. (2018). Optimizing of metal foam design for the use as a heat exchanger. Archives of Metallurgy and Materials. 63(4), 1875-1881. ISSN 1733-3490.

Go to article

Authors and Affiliations

F. Radkovský
1
ORCID: ORCID
V. Merta
1
ORCID: ORCID
T. Obzina
1

  1. VSB - Technical University of Ostrava, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

Porous metals show not only extremely low density, but also excellent physical, mechanical and acoustic properties. In this study, Hastelloy powders prepared by gas atomization are used to manufacture 3D geometries of Hastelloy porous metal with above 90% porosity using electrostatic powder coating process. In order to control pore size and porosity, foam is sintered at 1200~1300°C and different powder coating amount. The pore properties are evaluated using SEM and Archimedes method. As powder coating amount and sintering temperature increased, porosity is decreased from 96.4 to 94.4%. And foam density is increased from 0.323 to 0.497 g/cm3 and pore size is decreased from 98 to 560 μm. When the sintering temperature is increased, foam thickness and strut thickness are decreased from 9.85 to 8.13mm and from 366 to 292 μm.

Go to article

Authors and Affiliations

Min-Jeong Lee
Yu-Jeong Yi
Hyeon-Ju Kim
Manho Park
Byoung-Kee Kim
Jung-Yeul Yun

This page uses 'cookies'. Learn more