Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

High-speed switching capabilities of SiC MOSFET power modules allow building high power converters working with elevated switching frequencies offering high efficiencies and high power densities. As the switching processes get increasingly rapid, the parasitic capacitances and inductances appearing in SiC MOSFET power modules affect switching transients more and more significantly. Even relatively small parasitic capacitances can cause a significant capacitive current flow through the SiC MOSFET power module. As the capacitive current component in the drain current during the turn-off process is significant, a commonly used method of determining the switching power losses based on the product of instantaneous values of drain-source voltage and drain current may lead to a severe error. Another problem is that charged parasitic capacitances discharge through the MOSFET resistive channel during the turn-on process. As this happens in the internal structure, that current is not visible on the MOSFET terminals. Fast switching processes are challenging to measure accurately due to the imperfections of measurement probes, like their output signals delay mismatch. This paper describes various problems connected with the correct determination of switching power losses in high-speed SiC MOSFET power modules and proposes solutions to these problems. A method of achieving a correct time alignment of waveforms collected by voltage and current probes has been shown and verified experimentally. In order to estimate SiC MOSFET channel current during the fast turn-off process, a method based on the estimation of nonlinear parasitic capacitances current has also been proposed and verified experimentally
Go to article

Authors and Affiliations

Dawid Zięba
1
ORCID: ORCID
Jacek Rąbkowski
2

  1. Medcom Company, Jutrzenki 78A, 02-230 Warsaw, Poland
  2. University of Technology, Institute of Control and Industrial Electronics, Koszykowa 75, 00-662 Warsaw, Poland

This page uses 'cookies'. Learn more