Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The demands placed on industry today are increasingly challenging and demanding. To meet these challenges, designers, contractors, and technology managers are constantly looking for effective solutions. Industry has always thrived on new technologies and innovations to achieve better results, so it is critical to undertake new developmental research to simulate and test new technological proposals. In this paper, the author describes a new direction in civil engineering technology that interdisciplinary couples solutions known to the bridge industry with geotechnical aspects in the technology space and the possibility of implementation in the construction industry. The author proposes the application of prestressing together with technological aspects of this solution to diaphragm walls, which are not only a temporary housing but also the foundations of a new investment. Thanks to this solution it is possible, among other things, to resign from one level of diaphragm expansion of diaphragm walls, which translates into cost optimization. It is an innovative approach to designing and most of all constructing the load-bearing structure, which directly influences the technological optimization of selected issues of completing the underground parts of the investment. Additionally, the presented solution contributes to the balanced execution of the investment by reducing the use of materials and construction equipment. The author discusses technological, execution and implementation problems related to the application of innovative solutions in construction companies together with examples of cost optimization. The author presents the results of conducted research with application of the proposed solution in the implementation of the underground commercial investment.
Go to article

Authors and Affiliations

Mateusz Frydrych
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The subject of this paper is an analysis of the influence of circumferential prestressing on the interaction of cylindrical silos and tanks with the subsoil. The behaviour of the shell structures of RC and PC cylindrical silos or tanks (with circumferential pre-tensioning), and particularly of the ground slab interacting with subsoil, depends largely on the function graphs of the subsoil reactions on the foundation surface. Distributions of the subbase reactions on the ground slab in such structures as silos and tanks have a significant impact on the behaviour of not only the slab itself, but also the interacting shell structure. An analysis of these structures with walls fixed in a circular ground slab and foundation ring was carried out taking into consideration the elastic half-space model using the Gorbunov-Posadov approach and the two-parameter Winkler model. In the computational examples of RC and PC silos and tanks with walls fixed in the circular ground slab or foundation ring, the eventual effects of prestressing obtained as a result of the superposition of internal forces were examined. Although the results for both subsoil models proved to be divergent, the conclusions that follow are fairly important for the engineering practice.

Go to article

Authors and Affiliations

Paweł Marek Lewiński

This page uses 'cookies'. Learn more