Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The number of human cases of salmonellosis in the EU was 94,625 in 2015. Considering the source of these infections, Salmonella spp. was most frequently detected in broiler chicken meat and Salmonella Enteritidis (SE) was the most commonly reported serovar.

The efficacy of probiotics in limiting Salmonella spp. infection in poultry has been demonstrated in numerous papers. The administration of probiotics at the level of primary production reduces the risk of contamination of poultry food products with Salmonella spp.

A study was carried out in order to determine the potential for reducing the Salmonella spp. population in broiler chickens with the use of the Lavipan (JHJ, Poland) probiotic that comprised selected stains of lactic acid bacteria and Saccharomyces cervisae.

Salmonella spp.-free broiler chickens were divided into two groups and received the same feed with (group L) or without (group C) the probiotic throughout the experiment. All day-old chickens were infected per os with SE. Samples of cecum content were collected 2, 4, and 6 weeks after SE infection and pectoral muscles were collected 6 weeks following SE infection for the evaluation of the SE population number. Serum samples for serological examinations were collected 6 weeks after infection.

Six weeks after infection, the number of SE-positive cecal samples was lower in the L group (12.5% positive) in comparison to the C group (87.5%). Similar results were demonstrated for the muscle samples (25% in contrast to 87.5%). At the same time, in both cases, the SE CFU/g was significantly lower in the L group. The results of our study indicate that Lavipan was capable of reducing the population of SE in the gastrointestinal tract, which eventually improved the hygienic parameters of the pectoral muscles.

Four weeks after infection, SE was not detected in any of the experimental groups. In both groups, no specific anti-SE antibodies were detected.

Go to article

Authors and Affiliations

M. Smialek
E. Kaczorek
E. Szczucińska
S. Burchardt
J. Kowalczyk
B. Tykałowski
A. Koncicki
Download PDF Download RIS Download Bibtex

Abstract

This study was carried out to evaluate the potential effects of 90 days-long dietary supple- mentation of probiotic and yeast culture on immunity condition of lambs. Fifteen Rahmani growing male lambs (about 5 months old and 23.21±2.75 kg body weight) were randomly allo- cated to three equal groups consisting of 5 animals each. The animals in the first group, served as a control (group C), were fed a basal diet without any supplementation. The lambs in the second and third group were fed the basal diet supplemented with probiotic (group Y) or yeast culture (group YC), respectively. The probiotic consisted of live yeast (Saccharomyces cerevisae) alone, while the yeast culture was composed of Saccharomyces cerevisiae and the media on which it was grown. In group Y and YC, each lamb was supplemented daily with 0.5 g and 7.0 g of live yeast and yeast culture, respectively. Blood samples were collected before feeding the supplements and then every 15 days until the day 90th. Total and differential leucocytic counts, total protein, albumin, IgA, IgG and IgM levels were measured in blood. There were insignificant (p>0.05) variations in the levels of total and differential leucocytic counts and total protein among the groups throughout the experiment. However, significant differences (p<0.05) were found in globulin, IgA, IgG and IgM in both (Y) and (YC) groups, but the effect of yeast culture seems to be better than that of the probiotic. In conclusions, the obtained results indicate that the tested probiotic and yeast culture improve the immunological status of lambs.

Go to article

Authors and Affiliations

M.M. Mahmoud
I.M.I. Youssef
M.M. Abd El-Tawab
H.A. Bakr
N.A. Eissa
M.S. Hassan
N.D. Giadinis
S. Milewski
W. Baumgartner
P. Sobiech
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to determine the effects of feed addition of LAVIPAN PL5 probiotic preparation containing compositions of microencapsulated lactic acid bacteria ( Leuconostoc mesenteroides, Lactobacillus casei, Lactobacillus plantarum, Pediococcus pentosaceus) on production parameters and post-vaccinal immune response in pigs under field condition. The study was performed on 400 pigs in total and 60 pigs from this group were used to evaluate the effect of the product tested on the post-vaccinal response. The animals were divided into two groups: control group, fed without additive of LAVIPAN PL5 and the study group, receiving LAVIPAN PL5 at doses recommended by manufacturer from weaning to the end of fattening. The following parameters were recorded: main production parameters, including weight gains, fattening time (slaughter age) and animal health status during the study (mortality), and specific humoral post-vaccinal response after vaccination against swine erysipelas. The results indicate that the application of LAVIPAN PL5 had positive influence on the animals` productivity and did not significantly affect the post-vaccinal antibody levels and the development and maintenance of the post-vaccinal response, albeit the levels of antibodies were slightly higher in the animal receiving the test preparation. The higher average daily weight gains (by over 3%) which resulted in a 2 kg higher average weight at slaughter and a reduction of the fattening period by 5 days, undoubtedly contributed to significant economic benefits.
Go to article

Bibliography


Andersen AD, Cilieborg MS, Lauridsen C, Mørkbak AL, Sangild PT (2017) Supplementation with Lactobacillus paracasei or Pediococcus pentosaceus does not prevent diarrhoea in neonatal pigs infected with Escherichia coli F18. Br J Nutr 118: 109-120.
Bhandari SK, Opapeju FO, Krause DO, Nyachoti CM (2010) Dietary protein level and probiotic supplementation effects on piglet response to Escherichia coli K88 challenge: Performance and gut microbial population. Livest Sci 133: 185-188.
Blaabjerg S, Artzi DM, Aabenhus R (2017) Probiotics for the Prevention of Antibiotic-Associated Diarrhea in Outpatients-A Systematic Review and Meta Analysis. Antibiotics (Basel) 6: 21.
Bomba A, Nemcova R, Gancarcikova S, Herich R, Kastel R (1999) Potentiation of the effectiveness of Lactobacillus casei in the prevention of E. coli induced diarrhea in conventional and gnotobiotic pigs. Adv Exp Med Biol 473: 185-190.
Cha CN, Park EK, Yoo CY, Kim S, Lee HJ (2015) Effect of Lactobacillus plantarum on noxious gas emission and carcass quality grade in finishing pigs. J Biomed Res 16: 72-76.
Chattha KS, Roth JA, Saif LJ (2015) Strategies for design and application of enteric viral vaccines. Annu Rev Anim Biosci 3: 375-395.
Chattha KS, Vlasova AN, Kandasamy S, Esseili MA, Siegismund C, Rajashekara G, Saif LJ (2013) Probiotics and colostrum/milk differen-tially affect neonatal humoral immune responses to oral rotavirus vaccine. Vaccine 31: 1916-1923.
Cho JH, Zhao PY, Kim IH (2011) Probiotics as a dietary additive for pigs: a review. J Anim Vet Adv 10: 2127-2134.
Collins MD, Gibson GR (1999) Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial eco- logy of the gut. Am J Clin Nutr 69: 1052S-1057S.
Deng Z, Luo XM, Liu J, Wang H (2020) Quorum Sensing, Biofilm, and Intestinal Mucosal Barrier: Involvement the Role of Probiotic. Front Cell Infect Microbiol 10: 538077.
Dowarah R, Verma AK, Agarwal N (2017) The use of Lactobacillus as an alternative of antibiotic growth promoters in pigs: A review. Anim Nutr 3: 1-6.
Ferdous MF, Arefin MS, Rahman MM, Ripon MMR, Rashid MH, Sultana MR, Hossain MT, Ahammad MU, Rafiq K (2019) Beneficial effects of probiotic and phytobiotic as growth promoter alternative to antibiotic for safe broiler production. J Adv Vet Anim Res 6: 409-415.
Fooks LJ, Fuller R, Gibson GR (1999) Prebiotic, probiotics, and human gut microbiology. Int Dairy J 9: 53-61.
Gareau MG, Sherman PM, Walker WA (2010) Probiotics and the gut microbiota in intestinal health and disease. Nat Rev Gastroenterol Hepatol 7: 503–514.
Grela ER, Semeniuk V (2006) Consequences of the withdrawal of antibiotic growth promoters from animal feeding. Med Weter 62: 502-507.
Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and ap-propriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11: 506–514.
Kashket ER (1987) Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerance. FEMS Microbiol Rev 46: 233-244.
Kenny M, Smidt H, Mengheri E, Miller B (2011) Probiotics – do they have a role in the pig industry? Animal 5: 462-470.
Liao SF, Nyachoti M (2017) Using probiotics to improve swine gut health and nutrient utilization. Anim Nutr 3: 331-343.
Link R, Kováč G, Pistl J (2005) A note on probiotics as an alternative for antibiotics in pigs. J Anim Feed Sci 14: 513-519.
Maldonado Galdeano C, Cazorla SI, Lemme Dumit JM, Vélez E, Perdigón G (2019) Beneficial Effects of Probiotic Consumption on the Immune System. Ann Nutr Metab 74: 115-124.
Mani V, Harris AJ, Keating AF, Weber TE, Dekkers JC, Gabler NK (2013) Intestinal integrity, endotoxin transport and detoxification in pigs divergently selected for residual feed intake. J Anim Sci 91: 2141-2150.
Markowska-Daniel I (1991) Stimulation of immune respon- ses using natural and chemical immunomodulators in therapy and in prophylaxis. Med Weter 47: 306-309.
Markowska-Daniel I, Pejsak Z, Szmigielski S, Jeljaszewicz J, Pulverer G (1992a) Adjuvant properties of Propionibacterium avidum KP-40 in vaccination against endemic viral and bacterial infections. I. Swine immunized with live attenuated Aujeszky’s disease virus vaccine and ex-perimentally infected with virulent viruses. Zentralbl Bakteriol 277: 529-537.
Markowska-Daniel I, Pejsak Z, Szmigielski S, Sokolska G, Jeljaszewicz J, Pulverer G (1992b) Adjuvant properties of Propionibacterium avidum KP-40 in vaccination against endemic viral and bacterial infections. III. Swine immunized with live attenuated Erysipelothrix rhusiopa-thiae vaccine and experimentally infected with virulent strains R203 and R270B of E. rhusiopathiae. Zentralbl Bakteriol 277: 547-553.
Nowak P, Kasprowicz-Potocka M, Zaworska A, Nowak W, Stefańska B, Sip A, Grajek W, Juzwa W, Taciak M, Barszcz M, Tuśnio A, Grajek K, Foksowicz-Flaczyk J, Frankiewicz A (2017) The effect of eubiotic feed additives on the performance of growing pigs and the activ-ity of intestinal microflora. Arch Anim Nutr 71: 455-469.
Perdigón G, de Macias ME, Alvarez S, Oliver G, de Ruiz Holgado AP (1988) Systemic augmentation of the immune response in mice by feeding fermented milks with Lactobacillus casei and Lactobacillus acidophilus. Immunology 63: 17-23.
Pomorska-Mól M, Kwit K (2011) Adjuvant properties of herbs. Med Weter 67: 449-452.
Pomorska-Mól M, Kwit K, Czyżewska E, Markowska-Daniel I (2013) Effects of dietary phytogenic product on the performance and immune response of pigs. Bull Vet Inst Pulawy 57: 381-386.
Regulation (EC) No 1831/2003 on the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition. https://www.eumonitor.eu/9353000/1/j9vvik7m1c3gyxp/vitgbgiehjzr
Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on veterinary medicinal products and repealing Directive 2001/82/EC. https://www.legislation.gov.uk/eur/2019/6/contents
Rybarczyk A, Romanowski M, Karamucki T, Ligocki M (2016) The effect of Bokashi probiotic on pig carcass characteristics and meat quali-ty. FleischWirtschaft International 1: 74-77.
Shin D, Chang SY, Bogere P, Won K, Choi JY, Choi YJ, Lee HK, Hur J, Park BY, Kim Y, Heo J (2019) Beneficial roles of probiotics on the modulation of gut microbiota and immune response in pigs. PLoS One 14: e0220843.
Smith F, Clark JE, Overman BL, Tozel CC, Huang JH, Rivier JE, Blikslager AT, Moeser AJ (2010) Early weaning stress impairs develop-ment of mucosal barrier function in the porcine intestine. Am J Physiol Gastrointest Liver Physiol 298: G352–G363.
Smulski S, Turlewicz-Podbielska H, Wylandowska A, Włodarek J (2020) Non-antibiotic Possibilities in Prevention and Treatment of Calf Diarrhoea. J Vet Res 64: 119-126.
Valchev G, Popova-Ralcheva S, Bonovska M, Zaprianova I, Gudev D (2009) Effect of dietary supplements of herb extracts on performance in growing pigs. Biotechn Anim Husbandry 25: 859-870.
Valeriano VD, Balolong MP, Kang DK (2017) Probiotic roles of Lactobacillus sp. in swine: insights from gut microbiota. J Appl Microbiol 122: 554-567.
Vigors S, O’Doherty JV, Kelly AK, O’Shea CJ, Sweeney T (2016) The effect of divergence in feed efficiency on the intestinal microbiota and the intestinal immune response in both unchallenged and lipopolysaccharide challenged ileal and colonic explants. PLoS One 11: e0148145.
Wen K, Liu F, Li G, Bai M, Kocher J, Yang X, Wang H, Clark-Deener S, Yuan L (2015) Lactobacillus rhamnosus GG Dosage Affects the Adjuvanticity and Protection Against Rotavirus Diarrhea in Gnotobiotic Pigs. J Pediatr Gastroenterol Nutr 60: 834-843.
Yin H, Ye P, Lei Q, Cheng Y, Yu H, Du J, Pan H, Cao Z (2020) In vitro probiotic properties of Pediococcus pentosaceus L1 and its effects on enterotoxigenic Escherichia coli – induced inflammatory responses in porcine intestinal epithelial cells. Microb Pathog 144: 104163.
Yirga H (2015) The use of probiotics in animal nutrition. J Prob Health 3: 132.
Zhang W, Azevedo MS, Wen K, Gonzalez A, Saif LJ, Li G, Yousef AE, Yuan L (2008) Probiotic Lactobacillus acidophilus enhances the immunogenicity of an oral rotavirus vaccine in gnotobiotic pigs. Vaccine 26: 3655-3661.
Zhao PY, Kim IH (2015) Effect of direct-fed microbial on growth performance, nutrient digestibility, fecal noxious gas emission, fecal micro-bial flora and diarrhea score in weanling pigs. Anim Feed Sci Technol 200: 86-92.
Zimmermann B, Bauer E, Mosenthin R (2001) Pro- and prebiotics in pig nutrition potential modulators of gut health? J Anim Feed Sci 10: 47-56
Go to article

Authors and Affiliations

M. Pomorska-Mól
1
H. Turlewicz-Podbielska
1
J. Wojciechowski
2

  1. Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
  2. VETPOL Sp. z o.o., Grabowa 3, 86-300 Grudziądz, Poland
Download PDF Download RIS Download Bibtex

Abstract

Zinc oxide (ZnO) has been applied for many years in the production of pigs to reduce the number of diarrhoea in weaned piglets. In June 2022, the European Union banned the use of zinc oxide (ZnO) in pig feed. According to scientific reports, the may reason was the accumulation of this microelement in the environment of pig production. It has been shown that frequent application of ZnO can lead to increased antibiotic resistance in pathogenic swine microflora. The main alternatives to ZnO are probiotics, prebiotics, organic acids, essential oils, and liquid feeding systems.
Alternatives to ZnO can be successfully used in pig production to reduce the number of diarrhoea among piglets during the postweaning period. Additional reports indicated that bacteriophage supplementation has a positive effect on the health of pigs. The article provides an overview of current ZnO substitutes that can be used in pig farming.
Go to article

Authors and Affiliations

Z. Pejsak
1
P. Kaźmierczak
2
A.F. Butkiewicz
2
J. Wojciechowski
3
G. Woźniakowski
4

  1. University Center of Veterinary Medicine JU-AU, Mickiewicza Avenue 24/28, 30-059 Krakow, Poland
  2. Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
  3. Private Veterinary Practice, Grabowa 3, 86-300 Grudziadz, Poland
  4. Department of Infectious and Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
Download PDF Download RIS Download Bibtex

Abstract

Probiotics and prebiotics are viable bacteria with beneficial effects on the host and components that selectively act on the beneficial commensal bacteria, respectively. The combined use of probiotics and prebiotics is termed synbiotics. Probiotic intake improves dysbiosis in the intestinal microbiota and can positively affect canine atopic dermatitis (CAD). However, clinical studies on improvements in CAD using synbiotics remain limited.
In this study, 15 dogs with CAD who received prednisolone, a synthetic glucocorticoid (GC) used in the treatment of CAD, for more than 90 days were continuously treated with Lactobacillus paracasei M-1 from fermented food as a probiotic, and trisaccharide kestose as a prebiotic, for 90 days to determine their synbiotic effects on CAD. The CAD symptoms were evaluated using the canine atopic dermatitis lesion index (CADLI) and pruritus visual analog scores (PVAS) at 30, 60 and 90 days after synbiotic administration. The total prednisolone use for 90 days pre- and post-administration was also evaluated.
Synbiotic administration significantly reduced the CADLI (pre: median, 28.0 [22.0-32.0]; 30 days: median, 20.0 [20.0−28.0]; 60 days: median, 20.0 [10.0−21.0]; 90 days: median, 12.0 [10.0-19.0]) and PVAS (pre: median, 6.0 [5.0-7.0]; 30 days: median, 3.0 [3.0-3.5]; 60 days: median, 3.0 [3.0-3.5]; 90 days: median, 2.0 [2.0-3.5]) scores, and reduced the total prednisone use over 90 days (pre: 112.0 [25-450] mg; post: 80.0 [18.-300.0] mg; p<0.001) in the 15 dogs. Thus, the synbiotic activity of L. paracasei M-1 and trisaccharide kestose can improve CAD.
Go to article

Bibliography

References:

Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat Rev Gastroenterol Hepatol 17: 687-701.
Chang YS, Trivedi MK, Jha A, Lin YF, Dimaano L, García-Romero MT (2016) Synbiotics for Prevention and Treatment of Atopic Dermati-tis: A Meta-analysis of Randomized Clinical Trials. JAMA Pediatr 70: 236-242.
Craig JM (2016) Atopic dermatitis and the intestinal micro-biota in humans and dogs. Vet Med Sci 2: 95-105.
D’Auria E, Panelli S, Lunardon L, Pajoro M, Paradiso L, Beretta S, Loretelli C, Tosi D, Perini M, Bedogni G, Abdelsalam A, Fiorina P, Bandi C, Zuccotti GV (2021) Rice flour fermented with Lactobacillus paracasei CBA L74 in the treatment of atopic dermatitis in infants: A randomized, double-blind, placebo-controlled trial. Pharmacol Res 163: 105284.
Endo A, Nakamura S, Konishi K, Nakagawa J, Tochio T (2016) Variations in prebiotic oligosaccharide fermentation by intestinal lactic acid bacteria. Int J Food Sci Nutr 67: 125-132.
Favrot C, Steffan J, Seewald W, Picco F (2010) A prospective study on the clinical features of chronic canine atopic dermatitis and its diagno-sis. Vet Dermatol 21: 23-31.
Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regula-tory T cells. Nature 504: 446-450.
Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K, Reid G (2017) Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14: 491-502.
Guidi EE, Gramenzi A, Persico P, Di Prinzio R, Di Simone D, Cornegliani L (2021) Effects of feeding a hypoallergenic diet with a nutraceu-tical on fecal dysbiosis index and clinical manifestations of canine atopic dermatitis. Animals (Basel) 11: 2985.
Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) Expert consensus document. The International Scientific Association for Pro-biotics and Prebiotics consensus statement on the scope and ap-propriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11: 506-514.
Ide K, Shinohara M, Yamagishi S, Endo A, Nishifuji K, Tochio T (2020) Kestose supplementation exerts bifidogenic effect within fecal mi-crobiota and increa-ses fecal butyrate concentration in dogs. J Vet Med Sci 82: 1-8.
Japanese Ministry of Health, Labor and Welfare Good Clinical Practice. Ministry of Health, Labor and Welfare Ministerial Ordinance, No. 28 dated March 27 (1997) and No. 24 dated February 29 (2008) Tokyo, Japan.
Kim H, Rather IA, Kim H, Kim S, Kim T, Jang J, Seo J, Lim J, Park YH (2015) A Double-Blind, Placebo Controlled-Trial of a Probiotic Strain Lactobacillus sakei Probio-65 for the Prevention of Canine Atopic Dermatitis. J Microbiol Biotechnol 25: 1966-1969.
Kim WK, Jang YJ, Han DH, Jeon K, Lee C, Han HS, Ko G (2020) Lactobacillus paracasei KBL382 administration attenuates atopic dermatitis by modulating immune response and gut microbiota. Gut Microbes 12: 1-14.
Ohshima-Terada Y, Higuchi Y, Kumagai T, Hagihara A, Nagata M (2015) Complementary effect of oral administration of Lactobacillus paracasei K71 on canine atopic dermatitis. Vet Dermatol 26: 350.
Olivry T, DeBoer DJ, Favrot C, Jackson HA, Mueller RS, Nuttall T, Prélaud P (2010) Treatment of canine atopic dermatitis: 2010 clinical practice guidelines from the International Task Force on Canine Atopic Dermatitis. Vet Dermatol 21: 233.
Orlando A, Refolo MG, Messa C, Amati L, Lavermicocca P, Guerra V, Russo F (2012) Antiproliferative and proapoptotic effects of viable or heat-killed Lactobacillus para-casei IMPC2.1 and Lactobacillus rhamnosus GG in HGC-27 gastric and DLD-1 colon cell lines. Nutr Cancer 64: 1103-1111.
Plant JD, Gortel K, Kovalik M, Polissar NL, Neradilek MB (2012) Development and validation of the Canine Atopic Dermatitis Lesion Index, a scale for the rapid scoring of lesion severity in canine atopic dermatitis. Vet Dermatol 23: 515-e103.
Rybnícek J, Lau-Gillard PJ, Harvey R, Hill PB (2009) Further validation of a pruritus severity scale for use in dogs. Vet Dermatol 20: 115-122.
Saridomichelakis MN, Olivry T (2016) An update on the treatment of canine atopic dermatitis. Vet J 207: 29-37.
Shibata R, Kimura M, Takahashi H, Mikami K, Aiba Y, Takeda H, Koga Y (2009) Clinical effects of kestose, a prebiotic oligosaccharide, on the treatment of atopic dermatitis in infants. Clin Exp Allergy 39: 1397-1403.
Swanson KS, Gibson GR, Hutkins R, Reimer RA, Reid G, Verbeke K, Scott KP, Holscher HD, Azad MB, Delzenne NM, Sanders ME (2020) The International Scientific
Szczepanik MP, Popiel J, Cekiera A, Pomorska-Handwerker D, Karaś-Tęcza J, Ściskalska M, Oczkowska K, Taube M, Olender V, Parys P (2020) Evaluation of the clinical efficiency of lokivetmab in client privately owned atopic dogs – multicenter study. Pol J Vet Sci 23: 191-195.
Tochio T, Kadota Y, Tanaka T, Koga Y (2018) 1-Kestose, the Smallest Fructooligosaccharide Component, Which Efficiently Stimulates Fae-calibacterium prausnitzii as Well as Bifidobacteria in Humans. Foods 7: 140.
Tochio T, Kitaura Y, Nakamura S, Sugawa C, Takahashi M, Endo A, Shimomura Y (2016) An alteration in the cecal microbiota composition by feeding of 1-kestose results in a marked increase in the cecal butyrate content in rats. PLoS One 11: e0166850.
Go to article

Authors and Affiliations

K. Kawano
1 2
K. Iyori
3
N. Kondo
2 4 5
S. Yamakawa
2 4 5
T. Fujii
6
K. Funasaka
2
Y. Hirooka
2 6
T. Tochio
6

  1. Tokyo Animal Allergy Center, Adachi-ku, Tokyo 123-0842, Japan
  2. Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi 470-1192, Japan
  3. Vet Derm Tokyo, Dermatological and Laboratory Service for Animals, Fujisawa, Kanagawa 252-0823, Japan
  4. Research and Development Division, Itochu Sugar Co., Ltd., Hekinan, Aichi 447-8506, Japan
  5. WELLNEO SUGAR Co., Ltd., Chuo-ku, Tokyo 103-8536, Japan
  6. Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake, Aichi 470-1192, Japan
Download PDF Download RIS Download Bibtex

Abstract

The use of lactoferrin (LF) and/or lactobacillus sp. (LB) to improve animal health and production has increased recently. However, information regarding the immune-modulatory role of LB supplementations either alone or in combination with LF in sheep remains unclear. Therefore, the present study was designed to evaluate the immune modulating properties and the antioxidant activity of supplementing commercially available LF and/or LB in healthy lambs. For this reason, twenty-four apparently healthy Ossimi lambs were used. After three weeks of acclimatization, the lambs were randomly allocated to four equal-sized groups and assigned to receive one of the following supplements: LB at a dose of ~ 1 g active ingredient/head (group 1), LF at a dose rate of 0.5 gm /head (group 2), a combination of both treatments using the same dosing regimens (group 3), and (group 4) received only 10 mL of isotonic saline and was considered as a control group. All supplements were given orally twice daily for 30 consecutive days. Blood samples were collected from each lamb before starting the experiment (T0) and two weeks (T15), and four weeks (T30) after giving supplements for hematological examinations, serum biochemical analyses, and RT-PCR assays. Our findings demonstrated that lambs receiving LB showed statistically significant (P<0.05) higher values of total leucocytes, lymphocytes and lysozyme activity than those receiving LF. In contrast, lambs that received LF had significantly (P< 0.05) higher values of serum catalase, nitric oxide and GSH with a significantly lower MDA level compared with those supplemented with LB. A combination of LF and LB supplementation elicited maximal up-regulation of Tollip, TLR4, IL-5, and IL-6 gene expression compared with other groups. The results suggest that bovine LF and or LB could be used as useful nutritional supplements to support the immune system in healthy lambs.

Go to article

Authors and Affiliations

M. El-Ashker
E. Risha
F. Abdelhamid
A. Ateya

This page uses 'cookies'. Learn more