Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 358
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The construction of transmission infrastructure and its functioning imposes the obligation on transmission companies to have a legal title to land. Both in Poland and in Canada, the title particularly results from the established easements subject to registration in public information systems. Due to different historical, social, and economic conditions, the specificity of legal regulations and technical solutions related to the registration of rights to land property is different in both countries. This results from the functioning and the substantive scope of particular systems of information on land property. Such systems are regulated by independent, internal rules of each of the countries. In Poland, easement is subject to registration in the land and mortgage register. In Canada, a federation country, it depends on legal regulations of particular provinces. The research objective of the article is the analysis of the way of registration of easements established for transmission companies in Poland and in Canada in the Ontario and Quebec provinces. The analysis covers the scope of registration of the said right in systems of information on land property. The evaluation of the applied solutions particularly involves pointing out those which to the greatest extent guarantee the safety of land property turnover. The best result is obtained in Canada in the Ontario province.
Go to article

Authors and Affiliations

Natalia Sajnóg
Katarzyna Sobolewska-Mikulska
Download PDF Download RIS Download Bibtex

Abstract

A condition which determines the location of technical infrastructure is an entrepreneur holding the right to use the property for construction purposes. Currently, there are parallel separate legal forms allowing the use of a real property for the purpose of locating transmission lines, i.e. transmission easement (right-of-way) established under the civil law and expropriation by limiting the rights to a property under the administrative law. The aim of the study is to compare these forms conferring the right to use real properties and to analyze the related surveying and legal problems occurring in practice. The research thesis of the article is ascertainment that the current legal provisions for establishing legal titles to a property in order to locate transmission lines need to be amended. The conducted study regarded legal conditions, extent of expropriation and granting right- of-way in the city of Krakow, as well as the problems associated with the ambiguous wording of the legal regulations. Part of the research was devoted to the form of rights to land in order to carry out similar projects in some European countries (France, Czech Republic, Germany, Sweden). The justification for the analysis of these issues is dictated by the scale of practical use of the aforementioned forms of rights to land in order to locate technical infrastructure. Over the period of 2011-2014, 651 agreements were concluded on granting transmission right-of-way for 967 cadastral parcels owned by the city of Krakow, and 105 expropriation decisions were issued, limiting the use of real properties in Krakow.
Go to article

Authors and Affiliations

Anna Trembecka
Download PDF Download RIS Download Bibtex

Abstract

Investigation of the tensile and fatigue properties of cast magnesium alloys, created by the heated mold continuous casting process (HMC),

was conducted. The mechanical properties of the Mg-HMC alloys were overall higher than those for the Mg alloys, made by the

conventional gravity casting process (GC), and especially excellent mechanical properties were obtained for the Mg97Y2Zn1

-HMC alloy.

This was because of the fine-grained structure composed of the -Mg phases with the interdendritic LPSO phase. Such mechanical

properties were similar levels to those for conventional cast aluminum alloy (Al84.7Si10.5Cu2.5Fe1.3Zn1 alloys: ADC12), made by the GC

process. Moreover, the tensile properties (UTS and f

) and fatigue properties of the Mg97Y2Zn1

-HMC alloy were about 1.5 times higher

than that for the commercial Mg90Al9Zn1

-GC alloy (AZ91). The high correlation rate between tensile properties and fatigue strength

(endurance limit: l

) was obtained. With newly proposed etching technique, the residual stress in the Mg97Y2Zn1 alloy could be revealed,

and it appeared that the high internal stress was severely accumulated in and around the long-period stacking-order phases (LPSO). This

was made during the solidification process due to the different shrinkage rate between α-Mg and LPSO. In this etching technique, microcracks

were observed on the sample surface, and amount of micro-cracks (density) could be a parameter to determine the severity of the

internal stress, i.e., a large amount to micro-cracks is caused by the high internal stress.

Go to article

Authors and Affiliations

M. Okayasu
S. Wu
T. Tanimoto
S. Takeuchi
Download PDF Download RIS Download Bibtex

Abstract

Recently, attempts have been made to use porous metal as catalysts in a reactor for the hydrogen manufacturing process using steam methane reforming (SMR). This study manufactured Ni-Cr-Al based powder porous metal, stacked cubic form porous blocks, and investigated high temperature random stack creep property. To establish an environment similar to the actual situation, a random stack jig with a 1-inch diameter and height of 75 mm was used. The porous metal used for this study had an average pore size of ~1161 μm by rolling direction. The relative density of the powder porous metal was measured as 6.72%. A compression test performed at 1073K identified that the powder porous metal had high temperature (800°C) compressive strength of 0.76 MPa. A 800°C random stack creep test at 0.38 MPa measured a steady-state creep rate of 8.58×10–10 s–1, confirming outstanding high temperature creep properties. Compared to a single cubic powder porous metal with an identical stress ratio, this is a 1,000-times lower (better) steady-state creep rate. Based on the findings above, the reason of difference in creep properties between a single creep test and random stack creep test was discussed.

Go to article

Authors and Affiliations

Tae-Hoon Kang
Kyu-Sik Kim
Man-Ho Park
Kee-Ahn Lee
Download PDF Download RIS Download Bibtex

Abstract

This study was carried out to evaluate the aspect of microstructure and mechanical property development on additive manufactured pure Ti at elevated heat-input. For this work, pure Ti powder (commercial purity, grade 1) was selected, and selective laser melting was conducted from 0.5 to 1.4 J/mm. As a result, increase in heat-input led to the significant grain growth form 4 μm to 12 μm, accompanying with the change of grain shape, correctly widmanstätten structured grains. In addition, Vickers microhardness was notably increased from 228 Hv to 358 Hv in accordance with elevated heat-input, which was attributed to the increased concentration of oxygen and nitrogen mainly occurred during selected laser melting process.

Go to article

Authors and Affiliations

Dong-Jin Kim
Hyung-Giun Kim
Ji-Sun Kim
Kuk-Hyun Song
Download PDF Download RIS Download Bibtex

Abstract

Residual stress has a great influence on the metal, but it is difficult to measure at small area using a general method. Residual stress calculations using the Vickers indentation can solve this problem. In this paper, a numerical simulation has been made for the residual stress measurement method of metal material deformed by high-speed impact. Then, the stress-strain curve at the high-speed deformation was confirmed through actual experiments, and the residual stresses generated thereafter were calculated by the Vickers indenter method. A Vickers indentation analysis under the same conditions was performed at the position where a residual stress of about 169.39 MPa was generated. Experiments were carried out and high speed impact was applied to the specimen to generate residual stress. The obtained results indicate that it is possible to identify residual stresses in various metals with various shapes through Vickers indentation measurements, and to use them for process and quality control.

Go to article

Authors and Affiliations

Changho Jung
Moon G. Lee
Yongho Jeon
Download PDF Download RIS Download Bibtex

Abstract

Crystals of PbTiO3 and 0.9PbTiO3-0.1(Na0.5Bi0.5)TiO3 were obtained by the flux growth method whereas crystals of (Na0.5Bi0.5)TiO3 were growth by the Czochralski method. Raman spectroscopy and polarized light microscopy were performed at room temperature. The Raman spectra of 0.9PbTiO3-0.1(Na0.5Bi0.5)TiO3 shown significant changes comparing to the base materials PbTiO3 and (Na0.5Bi0.5)TiO3. A domain structure was investigated by use polarized light microscopy. Dielectric permittivity measurements were carried out in the temperature range from 20°C to 550°C and a frequency from 1 kHz to 1 MHz. These showed higher dielectric permittivity for the crystals 0.9PbTiO3-0.1(Na0.5Bi0.5)TiO3 than the source materials PbTiO3 and (Na0.5Bi0.5)TiO3.

The high value of dielectric constant makes it possible to applied 0.9PbTiO3-0.1(Na0.5Bi0.5)TiO3 as efficient dielectric medium in a capacitors. The small size of the domain structure with the easy possibility of switching by application of an external electric field, give opportunities to apply these materials to FRAM memory applications. Moreover, the high sensitivity of these materials to the surrounding gases e.g. ammonia, chlorine, hydrogen, etc., allows the construction of sensor devices.

Go to article

Authors and Affiliations

P. Czaja
ORCID: ORCID
M. Piasecki
M.B. Zapart
J. Suchanicz
K. Konieczny
J. Michniowski
D. Sitko
G. Stachowski
K. Kluczewska-Chmielarz
Download PDF Download RIS Download Bibtex

Abstract

In this paper were conducted virtual tests to assess the impact of geometry changes on the response of metallic hexagonal honeycomb structures to applied loadings. The lateral compressive stress state was taken into consideration. The material properties used to build numerical models were assessed in laboratory tests of aluminium alloy 7075. The modelling at meso-scale level allow to comprehensive study of honeycomb internal structure. The changes of honeycomb geometry elements such as: fillets radius of the cell edges in the vicinity of hexagonal vertexes, wall thickness were considered. The computations were conducted by using finite element method with application of the ABAQUS finite element method environment. Elaborated numerical models allowed to demonstrate sensitivity of honeycomb structures damage process response to geometry element changes. They are a proper tools to perform optimization of the honeycomb structures. They will be also helpful in designing process of modern constructions build up of the considered composite constituents in various branches of industry. Moreover, the obtained results can be used as a guide for engineers. Conducted virtual tests lead to conclusion that simplification of the models of internal honeycomb structure which have become commonplace among both engineers and scientist can lead to inaccurate results.
Go to article

Authors and Affiliations

T. Sadowski
D. Pietras
Download PDF Download RIS Download Bibtex

Abstract

The knowledge whether and how chemical species react with tissues is important because of protection against harmful factors, diagnose of dermatological diseases, validation of dermatological procedures as well as effectiveness of topical therapies. In presented work the effects of chemical agents on plates of human fingernails were studied using Atomic Force Microscopy and Scanning Electron Microscopy. Apart from that, mapping of the elastic properties of the nails was also carried out. To obtain reliable measures of spatial evolution of the surface variations, recorded images were analyzed in terms of scaling invariance brought by fractal geometry, instead of common though not unique statistical measures.

Go to article

Authors and Affiliations

S. Kulesza
M. Bramowicz
M. Gwoździk
S. Wilczyński
A.M. Goździejewska
Download PDF Download RIS Download Bibtex

Abstract

The effect of CaSiAl modification (43-49% Ca, 43-48% Si, 2% Al) on the non-metallic inclusions and mechanical properties of cast lowcarbon steel is discussed. Tests were carried out on the cast steel with 0.2% C and micro-additives of V and Nb, used mainly for heavy steel castings (e.g. slag ladles). The modifier in an amount of 1.5 and 3 kg / Mg was introduced to the liquid steel before tapping the metal into a ladle. Test ingots of Y type and a weight of 10 kg were cast and then subjected to a normalizing heat treatment. Using light microscopy and scanning electron microscopy, qualitative and quantitative evaluation of the non-metallic inclusions present in as-cast samples was carried out. Additionally, tests of mechanical strength and impact strength were performed on cast steel with and without the different content of modifier. It was found that increasing the modifier addition affected impact strength but had no significant effect on tensile strength and yield strength. The material with high impact strength had the smallest area fraction of non-metallic inclusions in the microstructure (0.20%). The introduction of modifiers changed the morphology of non-metallic inclusions from dendritic to regular and nodular shapes.

Go to article

Authors and Affiliations

B. Kalandyk
R. Zapała
S. Sobula
G. Tęcza
Download PDF Download RIS Download Bibtex

Abstract

The work reports on the development of random three-dimensional Laguerre-Voronoi computational models for open cell foams. The proposed method can accurately generate foam models having randomly distributed parameter values. A three-dimensional model of ceramic foams having pre-selected cell volumes distribution with stochastic coordinates and orientations was created in the software package ANSYSTM. Different groups of finite element models were then generated using the developed foam modeling procedure. The size sensitivity study shows that each of foam specimens at least contains 125 LV-cells. The developed foam models were used to simulate the macroscopic elastic properties of open cell foams under uni-axial and bi-axial loading and were compared with the existing open cell foam models in the literature. In the high porosity regime, it is found that the elastic properties predicted by random Laguerre-Voronoi foam models are almost the same as those predicted by the perfect Kelvin foam models. In the low porosity regime the results of the present work deviate significantly from those of other models in the literature. The results presented here are generally in better agreement with experimental data than other models. Thus, the Laguerre-Voronoi foam models generated in this work are quite close to real foam topology and yields more accurate results than other open cell foam models.

Go to article

Authors and Affiliations

Z. Nie
Y. Lin
Q. Tong
Download PDF Download RIS Download Bibtex

Abstract

Properties of excitons confined to potential fluctuations due to indium distribution in the wetting layer which accompany self-assembled InAs/GaAs quantum dots are reviewed. Spectroscopic studies are summarized including time-resolved photoluminescence and corresponding single-photon emission correlation measurements. The identification of charge states of excitons is presented which is based on results of a theoretical analysis of interactions between the involved carriers. The effect of the dots’ environment on their optical spectra is also shown.

Go to article

Authors and Affiliations

A. Babiński
Download PDF Download RIS Download Bibtex

Abstract

The results presented in this article are part of the research on fatigue life of various foundry alloys carried out in recent years in the Lukasiewicz Research Network – Institute of Precision Mechanics and AGH University of Science and Technology, Faculty of Foundry Engineering. The article discusses the test results obtained for the EN-GJS-600-3 cast iron in an original modified low-cycle fatigue test (MLCF), which seems to be a beneficial research tool allowing its users to evaluate the mechanical properties of materials with microstructural heterogeneities under both static and dynamic loads. For a comprehensive analysis of the mechanical behaviour with a focus on fatigue life of alloys, an original modified low cycle fatigue method (MLCF) adapted to the actually available test machine was used. The results of metallographic examinations carried out by light microscopy were also presented. From the analysis of the results of the conducted mechanical tests and structural examinations it follows that the MLCF method is fully applicable in a quick and economically justified assessment of the quality of ductile iron after normalizing treatment.

Go to article

Authors and Affiliations

M. Maj
K. Pietrzak
A. Klasik
Download PDF Download RIS Download Bibtex

Abstract

The author presents a development of computational model of design of ball screws thread. This model is the basis for computer program, which calculates the geometrical features of the thread for precisely given backlashes and contact angles. The program makes it possible to create a data base of a new generation ball screw of quality competitive to foreign ball screws. The modeling allows one to better select the ball screw and to predict its quality in the early stage of design.
Go to article

Authors and Affiliations

Jerzy Z. Sobolewski
Download PDF Download RIS Download Bibtex

Abstract

W doświadczeniu poletkowym badano bezpośredni i następczy wpływ nawożenia kompostem z odpadów zieleni miejskiej w dawkach IO i 20 Mgha' na skład agregatowy, wodoodporność agregatów, właściwości wodne i powietrzne gleby płowej typowej wytworzonej z lessu, ulegającej powierzchniowej erozji wodnej. W pierwszym roku badań stwierdzono, że nawożenie kompostem istotnie zmniejszyło niekorzystną zawartość bryi o wymiarach> IO mm, a zwiększyło zawartość powietrznie suchych agregatów 1-5 mm i 0,25-1 mm w warstwie 0-1 O cm gleby zerodowanej. Wdrugim roku po zastosowaniu kompostu wglebie istotnie zwiększyła się zawartość wodoodpornych agregatów o wymiarach 0,25-10 mm w porównaniu z glebą poletek kontrolnych. W trzecim roku po zastosowaniu kompostu nie stwierdzono istotnych różnic w składzie agregatowym i wodoodporności agregatów glebowych. W bezpośrednim działaniu dodatek kompostu istotnie zmniejszy! gęstość gleby, istotnie zwiększy!wilgotność aktualną, pelnąpojemnośćwodną, przewodnictwo wodne nasycone, porowatość ogólną, zawartośćmakroporówo średnicy> 20 μmi przepuszczalność powietrznąwpowierzchniowej warstwie gleby. Podwpływemnawożenia kompostemnie zmieniła się istotnie polowa pojemnośćwodna i retencja wody użytecznej dla roślin, natomiast zawartośćmezoporówglebowych o średnicy 0,2-20 μmistotnie zmniejszyła się. Wartości wskaźnika jakości stanu fizycznego gleby S według Dextera w glebie nawożonej kompostem były zbliżone do wartości wskaźnika w obiektach kontrolnych. Bardziej skuteczne było nawożenie kompostem w dawce 20 Mg·ha·1•
Go to article

Authors and Affiliations

Jan Paluszek
Download PDF Download RIS Download Bibtex

Abstract

The electronic, magnetic, and optical properties of PtCoBi half-Heusler compound [001] surfaces and its bulk state have been investigated in the framework of density functional theory using GGA approximation. The half-metallic behaviors of CoBi-term, CoPt-term and PtBi-term decrease with respect to its bulk state. The spin polarization at the Fermi level is 73.2% for the bulk state, and it is –64.4% and –64.1% for the CoBi-term and PtBi-term, respectively while less polarization has been observed for the ­CoPt-term. All terminations have given almost similar optical responses to light. Plasmon oscillations for the terminations occur in the range of 12.5 to 14.5 eV (21 to 22 eV) along xx (zz), and it occurs at 23 eV for the bulk state. The refractive index for the bulk and all three terminations is very high in the infrared and visible areas, meaning a very strong metallic trend in these compounds. The phenomenon of super-luminance occurs for the incident light with energy exceeding 5.5 eV for all three terminations, and it occurs in the range of 10 eV for the bulk mode. These terminations show transparent behavior after the energy of 10 eV.
Go to article

Authors and Affiliations

Hamed Rezazadeh
1
ORCID: ORCID
Mohamadreza Hantehzadeh
1
ORCID: ORCID
Arash Boochani
2
ORCID: ORCID

  1. Islamic Azad University, Department of Physics, Science and Research Branch, Tehran, Iran
  2. Islamic Azad University, Department of Physics, Kermanshah Branch, Kermanshah, Iran
Download PDF Download RIS Download Bibtex

Abstract

Mechanical, electronic, thermodynamic phase diagram and optical properties of the FeVSb half-Heusler have been studied based on the density functional theory (DFT) framework. Studies have shown that this structure in the MgAgAs-type phase has static and dynamic mechanical stability with high thermodynamic phase consistency. Electronic calculations showed that this compound is a p-type semiconductor with an indirect energy gap of 0.39 eV. This compound’s optical response occurs in the infrared, visible regions, and at higher energies its dielectric sign is negative. The Plasmon oscillations have occurred in 20 eV, and its refraction index shifts to zero in 18 eV.
Go to article

Authors and Affiliations

A. Bagheri
1
A. Boochani
2
S.R. Masharian
1
F.H. Jafarpour
3

  1. Department of Physics, Hamedan Branch, Islamic Azad University, Hamedan, Iran
  2. Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
  3. Physics Department, Bu-Ali Sina University, 65174-4161 Hamedan, Iran
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of research on polymer composites based on polypropylene filled with various fillers. The physical and thermal properties of the composites are the result of the used polymer matrix as well as the properties and geometric features of the used filler. The geometric shape of the filler is particularly important in the processing of plastics in which the flow is forced, and high shearing tension occurs, which determines the high macromolecular orientation and specific arrangement of the filler particles. Thermal analysis (STA) was used in the research and photographs were taken using a scanning electron microscope (SEM) of fractures of polymer composites. The following fillers were used: talc, fibreglass, glass beads, and a halogen-free nitrogen-phosphorus flame retardant. The test material was obtained by extrusion. Shapes for strength tests, which were subjected to scanning microscopy tests after a static tensile test, were obtained by injection. The carried-out tests allowed us to determine the influence of the type and shape of individual fillers on structural changes in the structure of polypropylene composites and the degree of sample weight loss in a specific temperature range, depending on the used filler.
Go to article

Authors and Affiliations

Przemysław Postawa
1
Bartłomiej Jeż
1
ORCID: ORCID
Sylwester Norwiński
1
Aleksandra Kalwik
1

  1. Department of Technology and Automation, Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology,Al. Armii Krajowej 19c, 42-200 Czestochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Aluminum alloys have low density and good mechanical properties, making them suitable for the manufacture of mechanical structures where low weight is critical. However, when these alloys are subjected to elevated temperatures, their mechanical properties deteriorate significantly. The aim of this study is to investigate the effect of temperature on the mechanical properties of aluminium alloy, EN AC-Al Si12CuNiMg. For this purpose, an experimental investigation was performed at ambient and elevated temperatures on aluminium alloy samples prepared by casting. Tensile and hardness tests were carried out to characterize the mechanical properties of this material. Additionally, an optical microscope was used to examine the microstructures of this alloy. Finally, a scanning electron microscope was used to analyze the fracture modes of this material. The results show that the mechanical properties such as tensile strength, yield strength, and Young's modulus of this alloy dramatically decrease when the temperature exceeds 250C. The microstructural investigation reveals several factors that are detrimental to the mechanical properties of this alloy. This includes coarse-grained structures, micro-pores, and several intermetallic compounds. Furthermore, fractography reveals a minor cleavage-like pattern and micro-cracks on the fracture surface of all failed samples under various temperatures, indicating semi-brittle fracture mode.
Go to article

Authors and Affiliations

G.G. Sirata
1
ORCID: ORCID
K. Wacławiak
1
ORCID: ORCID
M. Dyzia
1
ORCID: ORCID

  1. Department of Materials Technologies, Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The impact of Garnet addition into the AL7075 Aluminium matrix on the physical, mechanical and corrosion properties are studied in this research paper. Al 7075/garnet composites are fabricated by using two-stage stir casting method in different (0, 5, 10, 15) volume percentages. Photomicrograph of prepared samples revealed the uniform distribution of garnet reinforcement into the base matrix. The corrosion rate is calculated by potentiodynamic polarization method. The actual density is increased by around 1.2% for Al 7075 / garnet (15%) composite as compared to base alloy. Micro hardness of Al 7075 / garnet (15%) composite is raised by around 47 (34%) compare to as cast base matrix. Al7075 / garnet (15%) composite tensile strength stood at 252 Mpa, which is 40% greater than the base alloy. Al 7075 / 15% garnet composites reduce around 97% of corrosion rate than the base matrix. Alloy elements influenced the corrosion than Garnet reinforcement.
Go to article

Bibliography

[1] M. Murali, M. Sambathkumar, M.S. Saravanan, Univers. J. Mater. Sci. 2 (3), 49-53 (2014). DOI : https://doi.org/10.13189/ujms.2014.020301
[2] A . Baradeswaran, A. Elaya Perumal, Compos. Part B-Eng. 54 (0), 146-152 (2013). DOI : https://doi.org/10.1016/j.compositesb.2013.05.012
[3] V .V. Shanbhag, N.N. Yalamoori, S. Karthikeyan, R. Ramanujam, K. Venkatesan, Procedia Eng. 97 (0), 607-613 (2014). DOI : https://doi.org/10.1016/j.proeng.2014.12.379
[4] S. Devaganesh, P.D. Kumar, N. Venkatesh, R. Balaji, J. Mater. Res. Technol. 9 (3), 3759-3766 (2020). DOI : https://doi.org/10.1016/j.jmrt.2020.02.002
[5] S.A. Kumar, A.P. Kumar, B.B. Naik, B. Ravi, Mater. Today-Proc. 5 (9), 17924-17929 (2018). DOI : https://doi.org/10.1016/j.matpr.2018.06.121
[6] M.P. Kumar, K. Sadashivappa, G.P. Prabhukumar, S. Basavarajappa, Mater. Sci.-Medzg 12 (3), 209-213 (2006).
[7] J. Hashim, L. Looney, M.S.J. Hashmi, J. Mater. Process. Tech. 92-93 (0), 1-7 (1999). DOI : https://doi.org/10.1016/S0924-0136(99)00118-1
[8] A . Mandal, M. Chakraborty, B. Murty, Wear 262 (1-2), 160-166 (2007). DOI: https://doi.org/10.1016/j.wear.2006.04.003
[9] S. Sivakumar, K. Padmanaban, M. Uthayakumar, P.I. Mech Eng. J-J-Eng. 228 (12), 1410-1420 (2014). DOI : https://doi.org/10.1177/1350650114541107
[10] G. Ranganath, S. Sharma, M. Krishna, Wear 251 (1-12), 1408-1413 (2001). DOI: https://doi.org/10.1016/S0043-1648(01)00781-5
[11] M. Sambathkumar, P. Navaneethakrishnan, K. Ponappa, K. Sasikumar, Lat. Am. J. Solids Stru. 14 (2), 243-255 (2017). DOI : https://doi.org/10.1590/1679-78253132
[12] M.A. Prasad, N. Bandekar, Journal of Materials Science and Chemical Engineering 3 (03), 1 (2015). DOI : https://doi.org/10.4236/msce.2015.33001
[13] A . Baradeswaran, A.E. Perumal, Compos. Part B-Eng. 56, 464-471 (2014). DOI : https://doi.org/10.1016/j.compositesb.2013.08.013
[14] S. Kumar, A. Sharma, R. Arora, O. Pandey, J. Mater. Res. Technol. 8 (6), 5443-5455 (2019). DOI : https://doi.org/10.1016/j.jmrt.2019.09.012
[15] S.C. Sharma, Wear 249 (12), 1036-1045 (2001). DOI : https://doi.org/10.1016/S0043-1648(01)00810-9
[16] M. Uthayakumar, S. Aravindan, K. Rajkumar. Mater. Design 47, 456-464 (2013). DOI : https://doi.org/10.1016/j.matdes.2012.11.059
[17] A . Sharma, S. Kumar, G. Singh, O. Pandey, Particul. Sci. Technol. 33 (3), 234-239 (2015). DOI : https://doi.org/10.1080/02726351.2014.954686
[18] H .T. Naeem, F.F. Abdullah, Eclet. Quim. 44 (2), 45-52 (2019). DOI: https://doi.org/10.26850/1678-4618eqj.v44.2.2019
[19] K . Seah, M. Krishna, V. Vijayalakshmi, J. Uchil, Corros. Sci. 44 (5), 917-925 (2002). DOI : https://doi.org/10.1016/S0010-938X(01)00099-3
Go to article

Authors and Affiliations

M. Sambathkumar
1
ORCID: ORCID
P. Navaneethakrishnan
1
ORCID: ORCID
K.S.K. Sasikumar
1
ORCID: ORCID
R. Gukendran
1
ORCID: ORCID
K. Ponappa
2
ORCID: ORCID

  1. Kongu Engineering College, Department of Mechanical Engineering, Erode, Tamilnadu, India
  2. Indian Institute of Information Technology Design and Manufacturing Jabalpur, Department of Mechanical Engineering, Jabalpur, India
Download PDF Download RIS Download Bibtex

Abstract

High tin bronze alloy (Cu>17wt.%Sn) is commonly as raw material to fabricate musical instruments. Gamelan musical instruments in Indonesia are produced using tin bronze alloy raw materials. The tin bronze alloy used by each gamelan craftsman has a different tin composition, generally in the range of Cu(20-24) wt.% Sn. This study aims to investigate the effect of microstructure, density, and mechanical properties of Cu(20-24)wt.%Sn against the acoustic properties processed by the sand casting method. The material is melted in a crucible furnace until it reaches a pouring temperature of 1100ºC by the sand casting method. The specimens were subjected to microstructure observations, density and porosity as well as mechanical properties testing including tensile strength, bending strength, hardness, and modulus of elasticity. Mechanical properties data then used to calculate several parameters of acoustic properties including speed of sound (c), impedance (z) and radiation coefficient (R). Processes simulation using Finite Element Analysis (FEA) and Experiment Method Analysis (EMA) were carried out to determine acoustic properties including sound intensity, natural frequency and damping capacity.
The experimental result shows that the increase in tin composition in Cu(20-24) wt.% Sn changed the microstructure of coarse grains into dendrite-columned fine grains. Physical properties of density decrease, while porosity increases. Mechanical properties including tensile strength, modulus of elasticity, and bending strength decreased, while the hardness of the alloy increases. The calculation of acoustic parameters such as the speed of sound (c), impedance (z) and radiation coefficient (R) has decreased. Moreover, sound intensity (dB), natural frequency (Hz) and damping capacity also decrease with increasing tin composition. Hence, tin bronze alloy Cu20wt.%Sn is the recommended raw material for the manufacture of gamelan instruments through the sand casting method.
Go to article

Bibliography

[1] Sumarsam. (2002). Introduction to Javanese gamelan (Javanese gamelan-beginners). Wesleyan University. Middletown.
[2] Sutton, R.A. (2007). Gamelan: The Traditional Sounds of Indonesia (review). Asian Music. 38(1), 142-144.
[3] Suyanto, Tjokronegoro H.A, Merthayasa I.G.N. & Supanggah R. (2015). Acoustic parameter for javanese gamelan performance in pendopo mangkunegaran Surakarta. Procedia – Social and Behavioral Sciences. 184. 322-327.
[4] Goodway, M. (1992). Metals of music. Materials Characterization. 29. 177-184.
[5] Audy, J. & Audy, K. (2008). Analysis of bell materials: Tin bronzes. China Foundry. 5(3). 199-204.
[6] Debut, V. Carvalho, M. Figueiredo, E. Antunes, J. & Silva, R. (2016). The sound of bronze: Virtual resurrection of a broken medieval bell. Journal of Cultural Heritage. 19. 544-554.
[7] Sugita, I.K.G. Soekrisno, R. Miasa, I.M. & Suyitno. (2011). Mechanical and damping properties of silicon bronze alloys for music applications. International Journal of Engineering &. Technology. 11(6). 81-85.
[8] Sugita, I.K.G. Soekrisno, R. & Miasa, I.M. (2011). The effect of annealing temperature on damping capacity of the bronze 20 % Sn alloy. International Journal of Mechanical & Mechatronics Engineering. IJMME-IJENS. 11(4).1-5.
[9] Slamet, S. Suyitno, & Kusumaningtyas, I. (2019). Effect of composition and pouring temperature of Cu (20-24) wt.% Sn by sand casting on fluidity and Mechanical Properties, Journal of Mechanical Engineering and Science. 13(4). 6022-6035.
[10] Sugita, I.K.G. & Miasa, I.M. (2013). Feasibility Study On The Use Of Silicon-Bronze Alloys As An Alternative Material For Balinese Musical Instruments. 20th International Congress on Sound & Vibration; 7-11 July 2013.1-5. Bangkok, Thailand
[11] Prayoga, B.T. Suyitno, Dharmastiti, R. & Akbar, F. (2018). Microstructural characterization, defect, and hardness of titanium femoral knee joint produced using vertical centrifugal investment casting. Journal of Mechanical Science and Technology.32(1).149-156.
[12] Salonitis, K. Jolly, M. & Zeng, B. (2017). Simulation-based energy and resource-efficient casting process chain selection : A case study. Procedia Manufacturing. 8. 67-74.
[13] Wegst, U.G. (2006). Wood For Sound. American Journal of Botany. 93.1439-1448.
[14] Adams, R. D. & Fox, M.A.O. (1973). Correlation of the damping capacity of cast iron with its mechanical properties and microstructure. Journal of Mechanical Engineering Science. 15(2). 81-94.
[15] Grafov, B.M. (1994). The archimedes law and electrocapillarity. Electrochimica Acta. 39. 467-469.
[16] ASTM. (2015). Standard test methods for bend testing of material for ductility.1.1-10.
[17] Sutiyoko & Suyitno. (2012). Effect of pouring temperature and casting thickness on fluidity, porosity and surface roughness in lost foam casting of gray cast iron. Procedia Engineering. 50. 88-94.
[18] Halvaee, A. & Talebi, A. (2001). Effect of process variables on microstructure and segregation in the centrifugal casting of C92200 alloy. Journal of Materials Processing Technology. 118, 123-127.
[19] Sutiyoko. Suyitno. & Mahardika. M. (2016). Effect of gating system on porosity and surface roughness of femoral stem in centrifugal casting. Adv. Sci. Technol. Soc. AIP Conference Proceedings. 1755, 1-6.
[20] Sulaiman, S. & Hamouda, A.M.S. (2004). Modeling and experimental investigation of the solidification process in sand casting. Journal of Materials Processing Technology. 156, 1723-1726.
[21] Nadolski, M. (2017). The Evaluation of Mechanical Properties of High-tin Bronzes. Archives of Foundry Engineering. 17(1), 127-130.
[22] Nimbulkar, S.L. & Dalu. R.S. (2016). Design optimization of gating and feeding system through simulation technique for sand casting of wear plate. Perspectives in Science. 8.39-42.
[23] Singh, R. & Singh, S. (2013). Effect of process parameters on surface hardness, dimensional accuracy, and surface roughness of investment cast components; Journal of Mechanical Science and Technology. 27(1), 191-197.
[24] Bartocha, D. & Baron, C. (2016). Influence of tin-bronze melting and pouring parameters on its properties and bells ’ tone. Archives of Foundry Engineering. 16(4), 17-22.

Go to article

Authors and Affiliations

S. Slamet
1 2
S. Suyitnoa
1
I. Kusumaningtyasa
1
I.M. Miasaa
1

  1. Universitas Gadjah Mada, Yogyakarta, Indonesia
  2. Universitas Muria Kudus, Kudus, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Halloysite is a filler which may be used to produce composites with thermoplastic polymer matrix. This work summarized the results of investigations of processing, structural, mechanical, and thermal properties of the composites with poly(vinyl chloride) (PVC) matrix and raw halloysite (HA) as well as its calcined product (KHA). The effectiveness of calcination was confirmed with X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, and nitrogen adsorption method. The PVC composites with HA as well as KHA were processed in the molten state in the Brabender mixer chamber. The reduction of gelation time and simultaneous increase in maximum torque with filler content were found based on the results of plastographometric analysis. SEM images of PVC/halloysite composites showed a homogeneous distribution of the filler in the polymer matrix. The introduction of halloysite leads to a slight increase in Young’s modulus and tensile strength compared to neat PVC, where the increase of both parameters is greater when KHA is used. The incorporation of 1% KHA led to an increase in impact strength, an effect which may be attributed to toughening of the polymer. A slight improvement of the Vicat softening temperature of 2.7°C for PVC/HA and heat deflection temperature of 2.4°C for PVC/KHA was also ascertained for PVC modified with 10 wt% of filler.
Go to article

Authors and Affiliations

Martina Wieczorek
1
ORCID: ORCID
Jolanta Tomaszewska
1
ORCID: ORCID
Tomasz Bajda
2
ORCID: ORCID
Jacek Długosz
3
ORCID: ORCID

  1. Bydgoszcz University of Science and Technology, Faculty of Chemical Technology and Engineering, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
  2. AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Al. A. Mickiewicza 30, 30-059, Kraków, Poland
  3. Bydgoszcz University of Science and Technology, Faculty of Agriculture and Biotechnology, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
Download PDF Download RIS Download Bibtex

Abstract

The effects of hydrogen absorption and manganese substitution on structural, electronic, optical, and thermoelectric properties of silicon-carbon nanotubes (SiCNT) are studied using the density functional theory and the GGA approximation. An examination of the PDOS curves and the electronic band structure showed that the Mn substitution leads to an increase in magnetic anisotropy and the occurrence of semi-metallic behavior and that the hydrogen absorption shifts the band gap toward the lower energies. A study of these nanostructures’ thermoelectric behavior reveals that the H absorption leads to a significant escalation in the figure of merit of the SiCNT to about 1.6 in the room temperature range. The effects of the H absorption on this nanotube’s optical properties, including the dielectric functions and its absorption spectra, are also investigated.
Go to article

Authors and Affiliations

Amir Toofani Shahraki
1
Heydar Ali Shafiei Gol
1
Salimeh Kimiagar
2
Naser Zare Dehnavi
1

  1. Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran, Iran
  2. Nano Research Lab (NRL), Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran, Iran
Download PDF Download RIS Download Bibtex

Abstract

In this study, microstructure, mechanical, corrosion and corrosive wear properties of Mg-xAg the as-cast and extruded alloys (x: 1, 3 and 5 wt. % Ag) were investigated. According to the experimental results, as the amount of Ag added in the casting alloys increases, the secondary phases (Mg4Ag, Mg54Ag17) emerging in the structure have become more clarified. Furthermore, it was observed that as the amount of Ag increased, the grain size decreased and thus the mechanical properties of the alloys increased. Similarly, the extrusion process enabled the grains to be refined and the mechanical properties to be increased. As a result of the in vitro tests performed, the Mg-1Ag exhibited very bad corrosion properties compared to other alloys. On the other hand, according to corrosive wear tests results, a high wear rate and friction coefficient were found for Mg-5Ag alloys.
Go to article

Authors and Affiliations

Levent Elen
1
ORCID: ORCID
Yunus Turen
2
ORCID: ORCID
Hayrettin Ahlatci
2
ORCID: ORCID
Yavuz Sun
2
ORCID: ORCID
Mehmet Unal
3
ORCID: ORCID

  1. Karabuk University, TOBB Vocational School of Technical Sciences, Machinery and Metal Technologies Department, Karabuk, Turkey
  2. Karabuk University, Metallurgical and Materials Engineering, Faculty of Engineering, Turkey
  3. Karabuk University, Manufacturing Engineering, Technology Faculty, Turkey

This page uses 'cookies'. Learn more