Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Improper planning of inventory will affect the factory operating costs, building costs, the cost of loss, and the cost of product defects due to being stored for too long which will eventually become a loss. This research discusses the processing industry which is experiencing lumpy demand. In carrying out the production process, the company has never made plans for future demand, resulting in a waste of message costs due to repeated orders of raw materials ordered to suppliers. This paper contributes to overcoming this issue by simulating future demand by using the Material Requirement Planning (MRP) method with a probabilistic Economic Order Quantity (EOQ) and Periodic Order Quantity (POQ) model. The demand in the coming period is determined using the Autoregressive Integrated Moving Average (ARIMA) method, and an aggregate plan is carried out to determine the regular cost of raw material production and optimal subcontracting. The final analysis states that the calculation of MRP on the selected items using POQ produces the lowest cost for planning S45C-F, SGT-R, and SKD11-R, while SLD-R uses the probabilistic EOQ method.
Go to article

Authors and Affiliations

Filscha Nurprihatin
1
Glisina Dwinoor Rembulan
2
Yohanes Dwi Pratama
2

  1. Department of Industrial Engineering, Sampoerna University, Indonesia
  2. Department of Industrial Engineering, Universitas Bunda Mulia, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

A lithological profile and measurements of the orientation and spacings of natural discontinuity planes were carried out in the Górka-Mucharz sandstone excavation (Krosno Beds, Outer Carpathians, Poland). In addition, the density of the discontinuities was assessed by measuring their spacings using oriented digital photographs of the quarry walls. An orthophotomap was also used in assessing the orientation and density of fractures with the tools available in QGIS. It was shown that digital image analysis can be used as an alternative to direct field measurements, especially in situations where access to an outcrop is difficult. The distributions of spacings larger than 40 cm, obtained by direct measurements and based on digital images of the quarry, were comparable. As a consequence, both measurement techniques yielded similar values of the quantity of blocks (QB), which differed by less than 2% for the minimum block volume in the range 0.4-1.0 m3 and by 6-7% for larger blocks. On the other hand, measurements of discontinuity spacings that were taken on the basis of an orthophotomap can only serve to estimate the approximate maximum value of this parameter. However, the use of orthophotomaps gives a more explicit spatial pattern of the main vertical joint sets than direct measurements in the quarry.

The analysis results also showed the following: (i) the presence of tectonic disturbances visible at the highest level of the deposit; (ii) higher density of set A fractures with planes deepening in the NE direction and a considerable reduction of the QB parameter, particularly in the peripheral NE and SW parts of the deposit; (iii) differences in the orientation of the discontinuity system between particular beds. The variable density of the discontinuities in the excavation is related to the presence of the faults that limit the Górka-Mucharz deposit.

Go to article

Authors and Affiliations

Beata Figarska-Warchoł
ORCID: ORCID
Grażyna Stańczak
Download PDF Download RIS Download Bibtex

Abstract

To increase their competitive advantage in turbulent marketplaces, contemporary manufacturers must show determination in seeking ways to: fulfill buyer orders with quality merchandise; meet deadlines; handle unexpected production disruptions; and lower the total relevant expense. To tackle the abovementioned challenges, this study explores an economic manufacturing quantity (EMQ) model with machine failure, overtime, and rework/disposal of nonconforming items; the goal is to find the best fabrication uptime that minimizes total relevant expenses. Specifically, we consider a production unit with overtime capacity as an operational feature that is linked to higher unit and setup costs. Further, its EMQ-based process is subject to random nonconforming items and failure rates. Extra screening separates the reworkable nonconforming items from scrap, and the rework is executed at the end of each cycle of regular fabrication. The failures follow a Poisson distribution, and a machine repair task starts as soon as a failure occurs; the fabrication of the lot that was interrupted resumes after the repair has been carried out. A decision model is built to capture the characteristics of the problem. Mathematical and optimization processes help in determining the optimal fabrication uptime. A numerical example not only illustrates the applicability of the research outcomes, but also reveals a diverse set of information about the individual or joint influences of deviations in mean-time-to-failure, overtime factors, and rework/disposal ratios linked to nonconforming rates related to the optimal replenishment uptime, total operating expenses, and various cost contributors; this facilitates better decision making.
Go to article

Authors and Affiliations

Singa Wang Chiu
1
Tiffany Chiu
2
Yuan-Shyi Peter Chiu
3
Hong-Dar Lin
3

  1. Faculty of Business Administration, Chaoyang University of Technology, Taichung City 413, Taiwan
  2. Faculty of Anisfield School of Business, Ramapo College of New Jersey, Mahwah, NJ 07430, USA
  3. Faculty of Industrial Engineering & Management, Chaoyang University of Technology, Taichung City 413, Taiwan
Download PDF Download RIS Download Bibtex

Abstract

There is a general agreement that remembering depends not only on the memory processes as such but rather that encoding, storage and retrieval are under the constant influence of the overarching, metacognitive processes. Moreover, many interventions designed to improve memory refer in fact to metacognition. Most attempts to integrate the very different theoretical and experimental approaches in this domain focus on encoding, whereas there is relatively little integration of approaches that focus on retrieval. Therefore, we reviewed the studies that used new ideas to improve memory retrieval due to a “metacognitive intervention”. We concluded that whereas single experimental manipulations were not likely to increase metacognitive ability, more extensive interventions were. We proposed possible theoretical perspectives, namely the Source Monitoring Framework, as a means to integrate the two, so far separate, ways of thinking about the role of metacognition in retrieval: the model of strategic regulation of memory, and the research on appraisals in autobiographical memory. We identified venues for future research which could address, among other issues, integration of these perspectives.

Go to article

Authors and Affiliations

Ewa Skopicz-Radkiewicz
Agnieszka Niedzwienska
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the paper is to examine the discursive strategies of persuasion exploring the rhetorical

argument from community combined with linguistic politeness. Based on eighty reviews of two French

comedies, the author shows how the persuasive strategies reflect some methods used in advertising

discourse, especially with regard to the rhetoric principle of movere and delectare and indirect means

of interpretation, activated in discourse by the use of quantity and quality.

Go to article

Authors and Affiliations

Dominika Topa-Bryniarska
Download PDF Download RIS Download Bibtex

Abstract

Due to the organization of construction works, one of the most difficult situations is when a building is planned in a heritage or a densely built-up location. Fixing an existing situation manually takes a lot of time and effort and is usually not accurate. For example, it is not always possible to measure the exact spacing between buildings at different levels and to consider all outside elements of an existing building. Improper fixation of the existing situation causes mistakes and collisions in design and the use of inappropriate construction solutions. The development and progress in technologies such as BIM, laser scanning, and photogrammetry broaden the options for supporting the management of construction projects. It is important to have an effective fast collection and processing of useful information for management processes. The purpose of this paper is to analyze and present some aspects of photogrammetry to collect and process information about existing buildings. The methodology of the study is based on the comparison of two alternative approaches, namely photogrammetry and BIM modelling. Case studies present an analysis of the quantity take-offs for selected elements and parts of the buildings based on the two approaches. In this article, the specific use of photogrammetry shows that the error between the detailed BIM model and the photogrammetry model is only 1.02% and the accuracy is 98.98%. Moreover, physical capabilities do not always allow us to measure every desired element in reality. This is followed by a discussion on the usability of photogrammetry.
Go to article

Authors and Affiliations

Robertas Kontrimovicius
1
ORCID: ORCID
Michał Juszczyk
2
ORCID: ORCID
Agnieszka Leśniak
2
ORCID: ORCID
Leonas Ustinovichius
1
ORCID: ORCID
Czesław Miedziałowski
3
ORCID: ORCID

  1. Faculty of Civil Engineering, Vilnius Gediminas Technical University, Lithuania
  2. Faculty of Civil Engineering, Cracow University of Technology, Poland
  3. Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Poland

This page uses 'cookies'. Learn more