Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the modeling and simulation of a novel topology of quasi Z-Multilevel Inverter with stepped DC input. The proposed inverter incorporates a simple switching technique with reduced component count and is aimed at producing boosted multilevel output AC voltage. The inverter consists of two stages and the buck /boost operation is obtained by varying the shoot through period of the pulses obtained by maximum constant boost control with third harmonic injection. With all the advantages of the quasi Z-network, the proposed inverter eliminates the fly back diodes and capacitors present in a conventional Z-Multilevel Inverter. Further the stress on the devices is less which leads to reduction in component value and hence the cost. The novel stepped DC coupled Single Phase quasi Z-Multilevel Inverter is modeled and simulated in the MATLAB – SIMULINK environment and its performance is analyzed for varying input and switching conditions. The voltage and current waveforms across each stage of the inverter is analyzed and the results are presented for different levels of input.

Go to article

Authors and Affiliations

T. Meenakshi
N. Suthanthira Vanitha
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a voltage control system for a PMSM motor based on the QZSDMC converter is proposed, which allows operation in both buck and boost modes as a possible method to make the drive resistant to power grid voltage sags. The authors presented a method for measuring and transforming the output voltage from QZS, enabling the use of a PI controller to control the voltage supplied to the DMC converter. The publication includes simulation and experimental studies comparing the operation of a PMSM motor powered by DMC and the proposed QZSDMC with voltage regulation. Simulation studies confirm the drive with QZSDMC resistance to voltage sags up to 80% of the rated value. Experimental studies demonstrate the correct operation of PMSM even with a power grid voltage amplitude equal to 40% of the rated value.
Go to article

Authors and Affiliations

Przemysław Siwek
Konrad Urbański
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In order to overcome the shortcoming of large switching losses caused by variable switching frequency appears in the conventional finite control set model predictive control (FCS-MPC) algorithm, a model predictive direct power control (MP-DPC) for an energy storage quasi-Z-source inverter (ES-qZSI) is proposed. Firstly, the power prediction model of the ES-qZSI is established based on the instantaneous power theory. Then the average voltage vector in the ���� coordinate system is optimized by the power cost function. Finally, the average voltage vector is used as the modulation signal, and the corresponding switching signal with fixed frequency is generated by the shoot-through segment space vector pulse width modulation (SVPWM) technology. The simulation results show that the ES-qZSI realizes six shoot-through actions per control cycle and achieves the constant frequency control of the system, which verifies the correctness of the proposed control strategy.
Go to article

Authors and Affiliations

Min'an Tang
1
Shangmei Yang
2
ORCID: ORCID
Kaiyue Zhang
1
Qianqian Wang
3
Chenggang Liu
4
Xuewang Dong
5

  1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, China
  2. College of Electrical Engineering, Lanzhou Institute of Technology, China
  3. College of Electrical and Information Engineering, Lanzhou University of Technology, China
  4. Gansu Province Special Equipment Inspection and Testing Institute, China
  5. Jingtaichuan Electric Power Pumping Irrigation Water Resources Utilization Center of Gansu Province, China

This page uses 'cookies'. Learn more