Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 45
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of the presented paper is to show the results of shape optimization of railway polynomial transition curves (TCs) of 5th, 7th, and 9th degrees through the use of the full vehicle model and new criteria of assessement concerning the jerk value. The search for the proper shape of TCs means that in this work, the evaluation of TC properties is based on select quantities and the generation of such a shape through the use of mathematically understood optimization methods. The studies presented have got a character of the numerical tests. For this work, advanced vehicle models describing dynamical track-vehicle and vehicle-passenger interactions as well as optimization methods were exploited. In the software vehicle model of a 2-axle freight car, the track discrete model, non-linear descriptions of wheel-rail contact are applied. This part of the software, the vehicle simulation software, is combined with a library optimization procedure into the final computer program.

Go to article

Authors and Affiliations

K. Zboiński
P. Woznica
Download PDF Download RIS Download Bibtex

Abstract

This article relates to optimization and assessment of railway polynomial transition curves. The search for the optimum shape meant here the evaluation of the transition curve properties based on chosen dynamical quantity and generation of such a curve shape. In the study, 2-axle rail vehicle was used. The rail model represented 2-axle freight car of the average values of parameters. Mathematically understood optimization methods were also applied. As the transition curve, the authors used polynomials of 9th and 11th degrees. As the criterion of the assessment, the integral of change of lateral acceleration along the route was also used. Wide range of the circular arc radii was applied by the authors. The mentioned radii were: 600 m, 900 m, 1200 m, 2000 m and 3000 m. In the work the results of the optimization – types of the curvatures of the optimum transition curves, as well as the vehicle dynamics were presented.
Go to article

Bibliography

[1] A. Ahmad, J. Ali, “G3 transition curve between two straight lines”, Proc. 5th CGIV’08 IEEE Computer Society, 2008, pp. 154–159, DOI: 10.1109/CGIV.2008.22.
[2] A. Ahmad, R. Gobithasan, J. Ali, “G2 transition curve using quadratic Bezier curve”, Proc. of the Computer Graphics, Imaging and Visualisation Conference, IEEE Computer Society, 2007, pp. 223–228.
[3] Z. Barna, L. Kisgyorgy, “Analysis of hyperbolic transition curve geometry”, Periodica Polytechnica Civil Engineering, 2015, vol. 59, no. 2, pp. 173–178.
[4] J.A. Bonneson, “A kinematic approach to horizontal curve transition design”, Transportation Research Record, 2000, vol. 1737, pp. 1–8.
[5] G. Bosurgi, A. D’Andrea, “A polynomial parametric curve (PPP) for design of horizontal geometry of highways”, Computer-Aided Civil and Infrastructure Engineering, 2012, vol. 24, no. 4, pp. 304–312.
[6] CEN Railway applications – ride comfort for passengers – measurement and evaluation, Brussels: ENV 12299, 2009.
[7] N. Eliou, G. Kaliabetsos, “Anew, simple and accurate transition curve type, for use in road and railway alignment design”, European Transport Research Review, 2014, vol. 6, no. 2, pp. 171–179, DOI: 10.1007/s12544-013-0119-8.
[8] C. Esveld, Modern Railway Track. MRT-Productions, 2001.
[9] S. Fischer, “Comparison of railway track transition curves types”, Pollack Periodica, An International Journal for Engineering and Infrastructure Science, 2009, vol. 4, no. 3, pp. 99–110, DOI: 10.1556/Pollack.4.2009.3.9.
[10] H. Hasslinger, Measurement proof for the superiority of a new track alignment design element, the so-called “Viennese Curve”, ZEVRail, 2005.
[11] E. Jacobs, “Die sinusoide als neuzeitliches trassierungselement”, Vermessung-Ingenieur, 1987, vol. 87, pp. 3–9.
[12] Q.P. Jiang, “Study of the new type of transition curve of road”, China Journal of Highway and Transportation”, 2002, vol. 15, no. 2.
[13] D. Kahler, “Ein übergangsbogen für den S-Bahnverkehr mit linearer Überhöhungsrampe”, Vermessungstechnik und Raumordnung, 1990, vol. 52, pp. 10–18.
[14] D. Kahler, “Übergangsbögen zur ausrundung der neigungswechel im schienen-schnellverkehr”, Zeitschrift für Vermessungwesen, 1990, vol. 115, pp. 154–162.
[15] W. Kik, “Comparison of the behaviour of different wheelset-trackmodels”, in Proceedings of the 12th IAVSD Symposium on the Dynamics of Vehicles on Roads and on Tracks, Vehicle System Dynamics, G. Sauvage, Ed. Amsterdam Swets & Zeitlinger, 1992, 20(suppl.), pp. 325–339.
[16] L.T. Klauder, S.M. Chrismer, J. Elkins J., “Improved spiral geometry for high-speed rail and predicted vehicle response”, Rail Track and Structures, 2003, vol. 6, pp. 15–17.
[17] A. Kobryn, “New solutions for general transition curves”, Journal of Surveying Engineering, 2014, vol. 140, no.1, pp. 12–21, DOI: 10.1061/(ASCE)SU.1943-5428.0000113.
[18] W. Koc, “New transition curve adapted to railway operational requirements”, Journal of Surveying Engineering, 2019, vol. 145, no. 3, DOI: 10.1061/(ASCE)SU.1943-5428.0000284
[19] B. Kuvfer, “Optimisation of horizontal alignments for railway – procedure involving evaluation of dynamic vehicle response”, Dissertation, Royal Institute of Technology, Stockholm, 2000.
[20] X. Li, M. Li, C. Ma, J. Bu, L. Zhu, “Analysis on mechanical performances of high-speed railway transition curves”, in Proceedings of the ICCTP 2009, Harbin, China, 5-9 Aug. 2009. pp. 1-8.
[21] X. Li, M. Li, H.Wang, J. Bu, M. Chen, “Simulation on dynamic behaviour of railway transition curves”, in Proceedings of the ICCTP 2010, Beijing, China, 4–8 August 2010, pp. 3349–3357.
[22] X. Li, M. Li, J. Bu, H. Wang, “Comparative analysis on the linetype mechanical performances of two railway transition curves”, China Railway Science, 2009, vol. 30, no. 6, pp. 1–6.
[23] X. Li, M. Li, J. Bu, Y. Shang, M. Chen, “A general method for designing railway transition curve algebraic equations”, in Proceedings of the ICCTP 2010, Beijing, China, 4–8 August 2010, pp. 3340–3348.
[24] S.L. Lian, J.H. Liu, X.G. Li, W.X. Liu, “Test verification of rationality of transition curve parameters of dedicated passenger traffic railway lines”, Journal of the China Rail Society, 2006, vol. 28, no. 6, pp. 88–92.
[25] M. Lindahl, Track geometry for high-speed railways, Department of Vehicle Engineering Royal Institute of Technology Stockholm, 2001.
[26] X.Y. Long, Q.C. Wei, F.Y. Zheng, “Dynamic analysis of railway transition curves”, Proc. IMechE, Part F: Journal Rail and Rapit Transit, 2010, vol. 224, no. 1, pp. 1–14, DOI: 10.1243/09544097JRRT287.
[27] Y. Michitsuji, Y. Suda, “Improvement of curving performance with assist control on transition curve for single-axle dedicated passenger traffic railway lines”, Journal of the China Railway Society, 2006, vol. 28, no. 6, pp. 88–92.
[28] A. Pirti, M.A. Yucel, T. Ocalan, “Transrapid and the transition curve as sinusoid”, Tehnicki Vjesnik, 2016, vol. 23, no. 1, pp. 315–320.
[29] J. Pombo, J. Ambrosio, “General spatial curve joint for rail guided vehicles: kinematics and dynamics”, Multibody System Dynamics, 2003, vol. 9, no. 3, pp. 237–264.
[30] T.I Shen, C.H. Chang, K.Y. Chang, C.C. Lu, “A numerical study of cubic parabolas on railway transition curves”, Journal of Marine Science and Technology, 2013, vol. 21, no. 2, pp. 191–197.
[31] Y. Suda, W. Wang, H. Komine, Y. Sato, T. Nakai, Y. Shimokawa Y, “Study on control of air suspension system for railway vehicle to prevent wheel load reduction at low-speed transition curve negotiation”, Vehicle System Dynamics 2006, vol. 44(supl.), pp. 814–822.
[32] Y. Tanaka, “On the transition curve considering effect of variation of the train speed”, ZAMM – Journal of Applied Mathematics and Mechanics, 2006, vol. 15, no. 5, pp. 266–267.
[33] E. Tari, O. Baykal, “A new transition curve with enhanced properties”, Canadian Journal of Civil Engineering, 2005, vol. 32, no. 5, pp. 913–923, DOI: 10.1139/105-051.
[34] D. Vermeij, “Design of a high speed track”, HERON, 2000, vol. 45, no. 1, pp. 9–23.
[35] Y.L. Xu, Z.L, Wang, G.Q. Li, S. Chen, Y.B. Yang, “High-speed running maglev trains interacting with elastic transitional viaducts”, Engineering Structures, 2019, vol. 183, pp. 562–578.
[36] J.Q. Zhang, Y.H. Huang, F. Li, “Influence of transition curves on dynamics performance of railway vehicle”, Journal of Traffic and Transportation Engineering, 2010, vol. 10, no. 4, pp. 39–44.
[37] K. Zboinski, “Dynamical investigation of railway vehicles on a curved track”, European Journal of Mechanics A-Solids, 1998, vol. 17, no. 6.
[38] K. Zboinski, “Numerical studies on railway vehicle response to transition curves with regard to their different shape”, Archives of Civil Engineering, 1998, vol. 44, no. 2, pp. 151–18.
[39] K. Zboinski, P. Woznica, “Optimisation of railway polynomial transition curves: a method and results”, in Proceedings of the First International Conference on Railway Technology: Research, Development and Maintenance. Stirlingshire, UK: Civil-Comp Press, 2012.
[40] K. Zboinski, P. Woznica, “Combined use of dynamical simulation and optimisation to form railway transition curves”, Vehicle System Dynamics, 2018, vol. 56, no. 9, pp. 1394–1450, DOI: 10.1080/00423114.2017.1421315.
Go to article

Authors and Affiliations

Krzysztof Zboinski
1
ORCID: ORCID
Piotr Woznica
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Transport, ul. Koszykowa 75, 00-662 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article concerns assessing the dynamical properties and shape optimization of railway transition curves (TCs) for the wide range – 600, 900, 1200, 2000, 3000, and 4000 m – of circular arc radii. The search for the optimum shape means in the current article the evaluation of the curve properties based on chosen dynamical quantities and generation of such shapes with use of a mathematically understood optimization method. As a transition curve in the studies performed, the authors adopted a polynomial of n-th degree, where n = 9 and 11. In the study one model of rail vehicle was used. The model represented 2-axle freight car of the average values of parameters. The authors took the so-called standard transition curves of 9th and 11th degrees, and 3rd degree parabola as initial transition curves in the optimization processes. As quality functions (evaluation criteria) the authors used three functions concerning lateral and vertical vehicle dynamics, and creepages in wheel-rail contact. In this work, the results of the optimization – types of the curvatures of the optimum transition curves – were presented and compared.
Go to article

Authors and Affiliations

Krzysztof Zboinski
1
ORCID: ORCID
Piotr Woznica
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Transport, ul. Koszykowa 75, 00-662 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The acoustic climate assessment needed for the selection of solutions (technical, legal and organisational), which will help to minimise the acoustic hazards in the analysed areas, is realised on the basis of acoustic maps. The reference computational algorithms, assigned to them, require very thorough preparation of input data for the considered noise source model representing - in the best possible way - the acoustic climate. These input data are burdened with certain uncertainties in this class of computational tasks. The uncertainties are related to the problem of selecting proper argument values (from the interval of their possible variability) for the modelled processes. This situation has a direct influence on the uncertainty of acoustic maps.

The idea of applying the interval arithmetic for the assessment of acoustic models uncertainty is formulated in this paper. The computational formalism assigned to the interval arithmetic was discussed. The rules of interval estimations for the model solutions determining the sound level distribution around the analysed noise source - caused by possible errors in the input data - were presented. The application of this formalism was illustrated in uncertainty assessments of modelling acoustic influences of the railway noise linear source on the environment.

Go to article

Authors and Affiliations

Wojciech Batko
Paweł Pawlik
Download PDF Download RIS Download Bibtex

Abstract

Due to different reasons a significant modal shift from railway to road transport took place over last decades. The basic reasons are pointed in the paper introduction together with contradicting transport policy taking into account environmental and economical challenges. Political vision to stimulate modal shift from road and air to railway cannot become true without achieving railway technical and operational interoperability. Paper describes wide range of technical barriers between individual intraoperable railway systems in civil engineering structures, traction power supply, control command and signalling and the ways, which are being applied to ensure stepwise converging of the technical solutions taking into account safety and technical compatibility, as well as other essential requirements, namely: reliability, accessibility, health and environment.

Go to article

Authors and Affiliations

M. Pawlik
Download PDF Download RIS Download Bibtex

Abstract

Heavy metal (As, Mn, Ni, Sn, Ti) concentrations were determined in soil and plant samples collected in different areas of the railway junction Iława Główna, Poland. Soil and plant samples were collected in four functional parts of the junction, i.e. the loading ramp, main track within the platform area, rolling stock cleaning bay and the railway siding. Four plant species occurring in relatively higher abundance were selected for heavy metals analysis, although in the loading ramp and platform areas only one species could be collected in the amount which makes chemical analysis possible. The selected species included three perennials (Daucus carota, Pastinaca sativa and Taraxacum officinale) and one annual plant (Sonchus oleraceus).

The entire area of the railway junction showed elevated concentrations of heavy metals when compared to the control level. It was most pronounced for the platform area and railway siding. The concentration of arsenic, manganese and nickel in plants growing in these parts of the junction exceeded the toxic level. The highest contamination of soil and plants found in the platform area suggested advanced emission process of the analyzed metals from wheel and track abrasion. Literature review showed that the concentration of the investigated metals in soil was generally higher than that found in centers of cities and along traffic roads proving that the railway is an important linear source of soil contamination

Go to article

Authors and Affiliations

Tomasz Staszewski
Małgorzata Malawska
Barbara Studnik-Wójcikowska
Halina Galera
Bogusław Wiłkomirski
Download PDF Download RIS Download Bibtex

Abstract

The study focused on environmental evaluation of the disposed wooden railway sleeper gasification system used for electrical energy production. The aforementioned base technology was referred to the system producing electricity from disposed wooden railway sleepers through combustion. The evaluation was carried out using the LCA technique. The results show that in scope of impact on human health and ecosystems, the technology based on sleeper gasification is friendlier to the environment than the alternative technology. The technology of reference produces a lower environmental burden in scope of depletion of non-renewable natural resources. In comparison of the base technology (gasification) and the alternative technology (combustion), the end environmental effect shows that in scope of the analysis the base technology, i.e. the technology involving gasification of disposed railway sleepers, is more friendly to the environment.

Go to article

Authors and Affiliations

Maria Bałazińska
Jarosław Zuwała
Download PDF Download RIS Download Bibtex

Abstract

The hyperloop concept is not new, but for many years it was hard for engineers to believe that it could be economically and technically feasible. Nowadays some technical solutions, which could enable construction and operation of a guided transport system based on hyperloop concept, are much more imaginable. Therefore a number of start-up companies are working on comprehensive proposals and chosen technologies aiming at creating the fifth transport mode thanks to innovative concepts, new technologies, and chosen railway, air transport, and space technologies. As new transport mode is expected to offer transport with high speed nearly equal to the speed of sound its feasibility will strongly depend also on coherency between transport means and transport infrastructure in a scale of a future fifth transport mode continent-wide transport network. To meet this challenge railway and start-up companies work together in two streams – in the formal framework of the European standardisation to prepare future hyperloop related EN standards and in research and development projects. The scale of required wide technical coherency on one side and the diversification of products and existence of different developers/producers/contracting entities providing infrastructure and transport means and creating market on the other side contradict if appropriate rules are not set precisely early enough. Such rules in railway transport are based on interoperability concept supported by agreed stable essential requirements and defined in the Railway Interoperability Directive and Technical Specifications for Interoperability. Paper presents findings regarding poor applicability of the railway interoperability to the hyperloop type transport systems at their early stage of development as well as challenges and proposed approaches for the dedicated hyperloop coherency approach – the hyperoperability as it is being discussed in the framework of the Hypernex European project.
Go to article

Authors and Affiliations

Agnieszka Kaczorek
1
ORCID: ORCID
Iwona Karasiewicz
1
ORCID: ORCID
Magdalena Kycko
1
ORCID: ORCID
Marek Pawlik
1
ORCID: ORCID
Krzysztof Polak
1
ORCID: ORCID
Wojciech Rzepka
1
ORCID: ORCID

  1. Railway Research Institute, Chłopickiego 50, 04-275 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Particular diligence in the preparation of documentation and conducting a tender procedure for construction works must be made by public contracting entities, who are subject to additional restrictions. In Poland, the largest public contracting entities are the sectoral ones. These are the entities (defined in Art. 3 of the Public Procurement Law Act) operating in the sectors of water management, energy, transport and postal services. The paper presents the analysis of tender offers for the execution of construction works or design and execution of construction works related to the reconstruction, construction and revitalization of railway lines, announced after the amendment to the Public Procurement Law on June 22, 2016. The considered examples are selected tender procedures covering the scope of construction and assembly works on railway lines throughout the country. The authors paid particular attention to the tender criteria applied and the requirements for the potential contractors for works in the field of railway infrastructure.

Go to article

Authors and Affiliations

A. Leśniak
F. Janowiec
Download PDF Download RIS Download Bibtex

Abstract

The mechanical characteristics of the railway superstructure are related to the properties of the ballast, and especially to the particle size distribution of its grains. Under the constant stress-strain of carriages, the ballast can deteriorate over time, and consequently it should properly be monitored for safety reasons. The equipment which currently monitors the railway superstructure (like the Italian diagnostic train Archimede) do not make any “quantitative” evaluation of the ballast. The aim of this paper is therefore to propose a new methodology for extracting railway ballast particle size distribution by means of the image processing technique. The procedure has been tested on a regularly operating Italian railway line and the results have been compared with those obtained from laboratory experiments, thus assessing how effective is the methodology which could potentially be implemented also in diagnostic trains in the near future.

Go to article

Authors and Affiliations

M. Guerrieri
G. Parla
Download PDF Download RIS Download Bibtex

Abstract

The practice capacity of a railway junction depends, in addition to the effective operation’s conditions, by the potential risk factors related to the design plan of the railway station. With the aim of an approach based on the “fuzzy sets” it is possible to determine the numeric value of the practice capacity by the logic – qualitative relations between the features of the railway junction and the potential risk factors. This methodology permits to try out the absolute value of a suitable vector β, (less then the unit) for the utilization of the theoretic capacity in conditions of maximum reliability of the system related to the aspect of safety (technique “fail safe”).

Go to article

Authors and Affiliations

F. Corriere
D. Di Vincenzo
M. Guerrieri
Download PDF Download RIS Download Bibtex

Abstract

To study the impact of suspended equipment on the ride comfort in a railway vehicle, a rigid flexible general model of such a vehicle is required. The numerical simulations is based on two different models, derived from the general model of the vehicle, namely a reference model of a vehicle with no equipment, and another model with six suspended elements of equipment mounted in various positions along the carbody. The objective of this paper arises from the observation that the literature does not contain any study that highlights the change in the ride comfort resulting exclusively due to the influence of equipment. The influence of the suspended equipment on the ride comfort is determined by comparing the ride comfort indices calculated in the carbody reference points, at the centre and above the two bogies, for a model with six elements of equipment and a model of the vehicle with no equipment.

Go to article

Bibliography

[1] T. Tomioka, T. Takigami, and Y. Suzuki. Numerical analysis of three-dimensional flexural vibration of railway vehicle car body. Vehicle System Dynamics, 44:272–285, 2006. doi: 10.1080/00423110600871301.
[2] C. Huang, J. Zeng, G. Luo, and H. Shi. Numerical and experimental studies on the car body flexible vibration reduction due to the effect of car body-mounted equipment. Proceedings of the Institution of Mechanical Engineering Part F: Journal Rail and Rapid Transit, 232(1):103–120, 2018. doi: 10.1177/0954409716657372.
[3] W. Sun, J. Zhou, D. Gong, and T. You. Analysis of modal frequency optimization of railway vehicle car body. Advances in Mechanical Engineering, 8(4):1–12, 2016. doi: 10.1177/1687814016643640.
[4] G.Yang, C.Wang, F. Xiang, and S. Xiao. Effect of train carbody’s parameters on vertical bending stiffness performance. Chinese Journal of Mechanical Engineering, 29(6): 1120–1127, 2016. doi: 10.3901/CJME.2016.0809.090.
[5] G. Diana, F. Cheli, A. Collina, R. Corradi, and S.Melzi. The development of a numerical model for railway vehicles comfort assessment through comparison with experimental measurements. Vehicle System Dynamics, 38(3):165–183, 2002. doi: 10.1076/vesd.38.3.165.8287.
[6] H. Ye, J. Zeng, Q. Wang, and X. Han. Study on carbody flexible vibration considering layout of underneath equipment and doors. In: 4th International Conference on Sensors, Measurement and Intelligent Materials (ICSMIM 2015), pages 1177–1183, Shenzhen, China, 27–28 December, 2015.
[7] G. Luo, J. Zeng, and Q. Wang. Identifying the relationship between suspension parameters of underframe equipment and carbody modal frequency. Journal of Modern Transportation, 22(4):206–213, 2014. doi: 10.1007/s40534-014-0060-0.
[8] M. Dumitriu. Influence of suspended equipment on the carbody vertical vibration behaviour of high-speed railway vehicles. Archive of Mechanical Engineering, 63(1):145–162, 2016. doi: 10.1515/meceng-2016-0008.
[9] H.C.Wu, P.B.Wu, J. Zeng, N.Wu, and Y.L.Shan. Influence of equipment under car on carbody vibration. Journal of Traffic and Transportation Engineering, 12(4):50–56, 2012. (in Chinese)
[10] H.L. Shi, P.B. Wu and R. Luo. Coupled vibration characteristics of flexible car body and equipment of EMU. Journal of Southwest Jiao Tong University, 49(3): 693–699, 2014. (in Chinese).
[11] Y. Sun, D. Gong and J. Zhou. Study on vibration reduction design of suspended equipment of high speed railway vehicles. Journal of Physics: Conference Series, 2016, 744: Paper No. 012212.
[12] K.-I. Aida, T. Tomioka, T. Takigami, Y. Akiyama, and H. Sato. Reduction of carbody flexural vibration by the high-damping elastic support of under-floor equipment. Quarterly Report of RTRI, 56(4):262–267, 2015. doi: 10.2219/rtriqr.56.4_262.
[13] H. Shi, R. Luo, P. Wu, J. Zeng, and J. Guo. Influence of equipment excitation on flexible carbody vibration of EMU. Journal of Modern Transportation, 22(4):195–205, 2014. doi: 10.1007/s40534-014-0061-z.
[14] H.L. Shi, R. Luo, P.B.Wu, J. Zeng, and J.Y. Guo. Application of DVA theory in vibration reduction of carbody with suspended equipment for high-speed EMU. Science China Technological Sciences, 57(7):1425–1438, 2014. doi: 10.1007/s11431-014-5558-5.
[15] H.L. Shi, R. Luo, P.B. Wu, and J. Zeng. Suspension parameters designing of equipment for electric multiple units based on dynamic vibration absorber theory. Journal of Mechanical Engineering, 50(14):155–161, 2014 (in Chinese).
[16] W. Sun, D. Gong, J. Zhou, and Y. Zhao. Influences of suspended equipment under car body on highspeed train ride quality. Procedia Engineering, 16:812–817, 2011. doi: 10.1016/j.proeng.2011.08.1159.
[17] Y.Z. Nie, J. Zeng, and F.G. Li.Research on resonance vibration simulation method of high-speed railway vehicle carbody. In: International Industrial Informatics and Computer Engineering Conference (IIICEC 2015), pages 1117–1121, Xi’an, Shaanxi, China, 10–11 January, 2015.
[18] H. Shi and P. Wu. Flexible vibration analysis for car body of high-speed EMU. Journal of Mechanical Science and Technology, 30(1):55–66, 2016. doi: 10.1007/s12206-015-1207-6.
[19] C 116. Interaction between vehicles and track. RP 1, Power spectral density of track irregularities, Part 1: Definitions, conventions and available data. Utrecht, 1971.
[20] ENV 12299. Railway applications ride comfort for passengers measurement and evaluation, 1997.
[21] UIC 513 R. Guidelines for evaluating passenger comfort in relation to vibration in railway vehicle, International Union of Railways, 1994.
[22] J. Zhou, R. Goodall, L.Ren, and H. Zhang. Influences of car body vertical flexibility on ride quality of passenger railway vehicles. Proceedings of the Institution of Mechanical Engineering Part F: Journal Rail and Rapid Transit, 223(5):461–471, 2009. doi: 10.1243/09544097JRRT272.
[23] J. Zhou, W. Sun, and D. Gong. Analysis on geometric filtering phenomenon and flexible car body resonant vibration of railway vehicles. Journal of Tongji University, 37(9):1653–1657, 2009 (in Chinese).
[24] D. Gong, J. Zhou, and W. Sun. On the resonant vibration of a flexible railway car body and its suppression with a dynamic vibration absorber. Journal of Vibration and Control, 19(5):649– 657, 2013. doi: 10.1177/1077546312437435.
[25] D. Gong, Y.J. Gu, and J.S. Zhou. Study on geometry filtering phenomenon and flexible car body resonant vibration of articulated trains. Advanced Materials Research, 787:542–547, 2013. doi: 10.4028/www.scientific.net/AMR.787.542.
[26] M. Dumitriu. Analysis of the dynamic response in the railway vehicles to the track vertical irregularities. Part I: The theoretical model and the vehicle response functions. Journal of Engineering Science and Technology Review, 8(4):24–31, 2015.
[27] M. Dumitriu. Analysis of the dynamic response in the railway vehicles to the track vertical irregularities. Part II: The numerical analysis. Journal of Engineering Science and Technology Review, 8(4):32–39, 2015.
Go to article

Authors and Affiliations

Mădălina Dumitriu
1

  1. Department of Railway Vehicles, University Politehnica of Bucharest, Bucharest, Romania
Download PDF Download RIS Download Bibtex

Abstract

The article investigates the influence of the carbody vertical flexibility on the ride comfort of the railway vehicles. The ride comfort is evaluated via the comfort index calculated in three reference points of the carbody. The results of the numerical simulations bring attention to the importance of the carbody symmetrical vertical bending upon the dynamic response of the vehicle, mainly at high velocities. Another conclusion is that the ride comfort can be significantly affected as a function of the symmetrical bending frequency of the carbody. Similarly, there are improvement possibilities for the ride comfort when the best selection of the stiffness in the longitudinal traction system between the carbody and bogie and the vertical suspension damping is made.

Go to article

Bibliography

[1] M. Dumitriu and I. Sebeşan. The quality of railway vehicles. MatrixRom, Bucharest, 2016. (in Romanian).
[2] J. Zhou, R. Goodall, L. Ren, and H. Zhang. Influences of car body vertical flexibility on ride quality of passenger railway vehicles. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 223(5):461–471, 2009. doi: 10.1243/09544097JRRT272.
[3] G. Diana, F. Cheli, A. Collina, R. Corradi, and S. Melzi. The development of a numerical model for railway vehicles comfort assessment through comparison with experimental measurements. Vehicle System Dynamics, 38(3):165–183, 2002. doi: 10.1076/vesd.38.3.165.8287.
[4] F. Cheli and R. Corradi. On rail vehicle vibrations induced by track unevenness: Analysis of the excitation mechanism. Journal of Sound and Vibration, 330(15):3744–3765, 2011. doi: 10.1016/j.jsv.2011.02.025.
[5] D. Gong, J. Zhou, and W. Sun. On the resonant vibration of a flexible railway car body and its suppression with a dynamic vibration absorber. Journal of Vibration and Control, 19(5):649–657, 2013. doi: 10.1177/1077546312437435.
[6] M. Dumitriu. Analysis of the dynamic response in the railway vehicles to the track vertical irregularities. Part II: The numerical analysis. Journal of Engineering Science and Technology Review, 8(4):32–39, 2015.
[7] P. Carlbom. Carbody and Passengers in Rail Vehicle Dynamics. Ph.D. Thesis, KTH, Vehicle Engineering, Stockholm, Sweden, 2000. NR 20140805.
[8] T. Tomioka, T. Takigami, and Y. Suzuki. Numerical analysis of three-dimensional flexural vibration of railway vehicle car body. Vehicle System Dynamics, 44(sup1):272–285, 2006. doi: 10.1080/00423110600871301.
[9] M. Dumitriu. On the critical points of vertical vibration in a railway vehicle. Archive of Mechanical Engineering, 61(4):609–625, 2014. doi: 10.2478/meceng-2014-0035.
[10] ENV 12299: Railway applications ride comfort for passengers measurement and evaluation, 1997.
[11] UIC 513 R: Guidelines for evaluating passenger comfort in relation to vibration in railway vehicle. International Union of Railways, 1994.
[12] S. Bruni, J. Vinolas, M. Berg, O. Polach, and S. Stichel. Modelling of suspension components in a rail vehicle dynamics context. Vehicle System Dynamics, 49(7):1021–1072, 2011. doi: 10.1080/00423114.2011.586430.
[13] H. Ye, J. Zeng, Q. Wang, and X. Han. Study on carbody flexible vibration considering layout of underneath equipment and doors. In Proceedings of 4th International Conference on Sensors, Measurement and Intelligent Materials (ICSMIM 2015), pages 1177–1183, Shenzhen, China, 27-28 Dec. 2015. Atlanitis Press, 2016. doi : 10.2991/icsmim-15.2016.217.
[14] K. Wang, H. Xia, M. Xu, and W. Guo. Dynamic analysis of train-bridge interaction system with flexible car-body. Journal of Mechanical Science and Technology, 29(9):3571–3580, 2015. doi: 10.1007/s12206-015-0801-y.
[15] C 116: Interaction between vehicles and track, RP 1, Power spectral density of track irregulari- ties, Part 1: Definitions, conventions and available data, 1971.
[16] I. Sebeşan and T. Mazilu. Vibrations of the railway vehicles. MatrixRom, Bucharest, 2010. (in Romanian).
[17] J. Zhou and S. Wenjing. Analysis on geometric filtering phenomenon and flexible car body resonant, vibration of railway vehicles. Journal of Tongji University, Natural Science, 37(12):1653–1657, 2009.
[18] D. Gong, Y.J. Gu, and J.S. Zhou. Study on geometry filtering phenomenon and flexible car body resonant vibration of articulated trains. In Advanced Materials Researches, Engineering and Manufacturing Technologies in Industry, volume 787 of Advanced Materials Research, pages 542–547. Trans Tech Publications, Nov. 2013. doi: 10.4028/www.scientific.net/AMR.787.542.
[19] F. Cheli and R. Corradi. On rail vehicle vibrations induced by track unevenness: Analysis of the excitation mechanism. Journal of Sound and Vibration, 330(15):3744–3765, 2011. doi: 10.1016/j.jsv.2011.02.025.
[20] M. Dumitriu. Geometric filtering effect of vertical vibrations of railway vehicles. Analele Universităţii “Eftimie Murgu” Resiţa, (1):48–61, 2012.
[21] M. Dumitriu. Considerations on the geometric filtering effect of the bounce and pitch movements in railway vehicles. Annals of the Faculty of Engineering Hunedoara, 12(3):155–164, 2014.
Go to article

Authors and Affiliations

Mădălina Dumitriu
1
Cătălin Cruceanu
1

  1. Department of Railway Vehicles, University Politehnica of Bucharest, Romania
Download PDF Download RIS Download Bibtex

Abstract

The paper focuses on a nonlinear model to represent the mechanical behaviour of a mix coil spring – rubber used in the secondary suspension of passenger rail vehicles. The principle of the model relies on overlapping of the forces corresponding to three components – the elastic component, the viscous component and the dry friction component. The model has two sources on non-linearity, in the elastic force and the friction force, respectively. The main attributes of the model are made visible by its response to an imposed displacement-type harmonic excitation. The results thus obtained from the applications of numerical simulation show a series of basic properties of the model, namely the dependence on amplitude and the excitation frequency of the model response, as well as of its stiffness and damping.

Go to article

Authors and Affiliations

Mădălina Dumitriu
Download PDF Download RIS Download Bibtex

Abstract

This paper evaluates the level of the vertical vibrations in a railway vehicle carbody generated by the track irregularities and examines the position of the critical point from the comfort perspective. The issue is reviewed on the basis of both a „rigid carbody” model and a „flexible carbody” model, which considers the first two carbody bending modes. The model errors are calculated as a function of the speed behaviour, and the results prove that the comfort performance of a railway vehicle evaluated on the „rigid carbody” model basis are overestimated compared to the ones derived from the implementation of the „flexible carbody” model, mainly at the centre of the carbody. Similarly, a correct estimation of the critical point position in the level of vibrations requires the modelling of the structural vibrations of the vehicle carbody.

Go to article

Authors and Affiliations

Mădălina Dumitriu
Download PDF Download RIS Download Bibtex

Abstract

Aiming at the problems of the negative sequence governance and regenerative braking energy utilization of electrified railways, a layered compensation optimization strategy considering the power flow of energy storage systems was proposed based on the railway power conditioner. The paper introduces the topology of the energy storage type railway power conditioner, and analyzes its negative sequence compensation and regenerative braking energy utilization mechanism. Considering the influence of equipment capacity and power flow of the energy storage system on railway power conditioner compensation effect, the objective function and constraint conditions of the layered compensation optimization of the energy storage type railway power conditioner were constructed, and the sequential quadratic programming method was used to solve the problem. The feasibility of the proposed strategy is verified by a multi-condition simulation test. The results show that the proposed optimization compensation strategy can realize negative sequence compensation and regenerative braking energy utilization, improve the power factor of traction substations when the system equipment capacity is limited, and it also has good real-time performance.
Go to article

Authors and Affiliations

Ying Wang
1
ORCID: ORCID
Yanqiang He
1
ORCID: ORCID
Xiaoqiang Chen
1
Miaomiao Zhao
1
Jing Xie
2

  1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070 China
  2. Xi’an Rail Transit Group Co., LTD Operation Branch Xi’an, 710000 China
Download PDF Download RIS Download Bibtex

Abstract

The analysis of ecological hazards on soil pollution by oil products has been provided in the impact zone of the railway. The results of oil product migration in soils in the area of influence on section Lviv–Khodoriv are given. To study this problem, a method was used to take soil samples according to the standard DSTU ISO 10381-4: 2005. To determine the content of petroleum products used the method MVV No. 081/12-0116-03 Pochvy. Based on the results of the study it was found that contamination with petroleum products in the study area exceeds the norm in the area of influence of the railway at a distance of 5 to –50 m on average 3.5 times. It is proposed to make management decisions to prevent violations of the sanitary protection zone of the railway and the placement of agricultural plots on it. For rehabilitation of contaminated soils, it is advisable to use a natural sorbent – glauconite, which is widespread in the bowels of Ukraine. The adsorption capacity of glauconite relative to diesel fuel has been experimentally established. According to our experiments it is proved the high efficiency of the proposed sorbent, which is 90%. Therefore, in the future it is necessary to periodically monitor the condition of the soil in the area to prevent pollution. This study proves that this practice is necessary.
Go to article

Authors and Affiliations

Oksana Chayka
1
ORCID: ORCID
Igor Petrushka
1
ORCID: ORCID
Maria Ruda
1
ORCID: ORCID
Nadiya Paranyak
1
ORCID: ORCID
Olena Matskiv
1
ORCID: ORCID

  1. Lviv National Polytechnic University, Faculty of Ecological Safety and Environmental Protection, Stepana Bandery St, 12, Lviv, Lviv Oblast, 79000, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the impact of exceeding the railway rails lifespan which usually causes a railway structural failure, thus an accident. The research highlights the rails’s high degradation, especially on the running area, consisting in 60-70% weight loss by advanced wear of the rail, followed by fatigue fracture caused by alternating cyclic stresses that initiates the crack and also by tensile stresses resulting in the crack growth. The chemical composition, structural and mechanical properties were analyzed in order to establish the causes that led to the railway rails rupture.
Go to article

Authors and Affiliations

A.C. Berbecaru
1
ORCID: ORCID
G. Coman
1
ORCID: ORCID
S. Ciucă
1
ORCID: ORCID
I.A. Gherghescu
1
ORCID: ORCID
M.G. Sohaciu
1
ORCID: ORCID
C. Grădinaru
1
ORCID: ORCID
C. Predescu
1
ORCID: ORCID

  1. Politehnica University of Bucharest, Faculty of Materials Science and Engineering, 313 Splaiul Independenței, 060042 Bucharest, Romania
Download PDF Download RIS Download Bibtex

Abstract

This work deals with the effect of austempering temperature and time on the microstructure and content of retained austenite of a selected cast steel assigned as a material used for frogs in railway crossovers. Bainitic cast steel was austempered at 400°C, 450°C and 500°C for two selected times (0.5 h, 4.0 h) to study the evolution of the microstructure and retained austenite content. The microstructure was characterized by optical microscopy, X-ray diffraction analyses (XRD), and hardness tests. Phase transformations during and after austempering were determined by dilatometric methods.

The increase in isothermal temperature causes an increase in time to start of bainitic transformation from 0.25 to 1.5 s. However, another increase in temperature to 500°C shifts the incubation time to as much as 11 s. The time after which the transformations have ended at individual temperatures is similar and equal to about 300 s (6 min.). The dilatation effects are directly related to the amount of bainite formation. Based on these we can conclude that the temperature effect in the case of cast steel is inversely proportional to the amount of bainite formed. The largest effect can be distinguished in the case of the sample austempered at 400°C and the smallest at 500°C. Summarizing the dilatometric results, we can conclude that an increase in austempering temperature causes an increase in austenite stability. In other words, the chemical composition lowers (shifts to lower temperatures) the range of bainite transformation. It is possible that at higher austempering temperatures we will receive only stable austenite without any transformation. This is indicated by the hatched area in Figure 4b. This means that the heat treatment of cast steel into bainite is limited on both sides by martensitic transformation and the range of stable austenite. The paper attempts to estimate the content of retained austenite with X-ray diffraction.

Go to article

Authors and Affiliations

S. Parzych
R. Dziurka
ORCID: ORCID
M. Goły
B. Kulinowski
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the following paper is to present the experimental field investigations in jointless railway track subjected to the author’s generated imperfections on its static work. The main concept for the executed investigations is to induce an intentional imperfection (both a concave and convex irregularity) in an actual railway track, propose a way of appropriate measurement (using the PONTOS system), and utilize author’s field investigations results to calibrate necessary parameters for theoretical calculations. An experimental formula describing the value of the force transferred from the rail to the railway sleeper on the grounds of the survey site caused by a locomotive is provided. Furthermore, the deflection of the chosen railway rail and sleeper due to the generated imperfection is subjected to analysis. Finally the objective of the present consideration is to resolve the calculations into the beam element such that the results can be used in computational railway practice. The scheme of the so-called a “hanging sleeper” is particularly unfavourable, a gap arises between the sleeper and the foundation, for which the significant changes appear, especially in the rail deflections and stresses. A work scheme of the railway track elements is described on the generated short concave and convex irregularity.
Go to article

Authors and Affiliations

Włodzimierz Andrzej Bednarek
1

  1. Poznan University of Technology, Faculty of Civil and Transport Engineering, Institute of Civil Engineering, Division of Bridges and Railway Engineering, ul. Piotrowo 5, 60-965 Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

Almost every construction investment should contain elements of risk forecasting, whose validity depends, among other things, on the correct assessment of potential threats. These risks were defined by the Authors as risk factors that were characterized and then grouped on the basis of performed research in the scope of their identification. Due to lack of method of scheduling railway investments on the construction market, including risk assessment, a research effort was undertaken [14-17], the result of which is the proposed method. The article presents the main assumptions of the original method of rail investment planning, which on the one hand, will take into account the impact of potential threats identified previously by the Authors, and, on the other, will allow project managers to refer to the conditions in which the implementation of a specific facility is planned. The assumption was made that the method, relatively easy to implement, supported by an appropriate computational program, will encourage teams planning the implementation of railway undertakings to its application and will improve the reliability of the schedules they develop.

Go to article

Authors and Affiliations

J. Kowalski
M. Poloński
Download PDF Download RIS Download Bibtex

Abstract

The dynamic analyses are of key importance in the cognitive process in terms of the correct operation of structures loaded with time alternating forces. The development of vehicle industry, which directly results in an increase in the speed of moving vehicles, forces the design of engineering structures that ensure their safe use. The authors of the paper verified the influence of speed and vehicle parameters such as mass, width of track of wheels and their number on the values of displacements and accelerations of selected bridge elements. The problem was treated as the case study, because the analyses were made for one bridge and the passage of three types of locomotives. The response of the structure depends on the technological solutions adopted in the bridge, its technical condition, as well as the quotient of the length of the object and vehicle. A new bridge structure was analyzed and dynamic tests were carried out for trainsets consisting of one and two locomotives. During the actual dynamic tests, the structure was loaded with a locomotive moving at a maximum speed of 160 km/h.

Go to article

Authors and Affiliations

Michał Jukowski
Artur Zbiciak
ORCID: ORCID
Bartosz Skulski
Download PDF Download RIS Download Bibtex

Abstract

The issue of assessing socio-economic impacts represent a key element of the decisionmaking process on the implementation of major public investment projects. The correctness of the decision depends both on the chosen principle of the socio-economic analysis and the input data. The presented article focuses on updating selected input values for the socio-economic assessment of railway infrastructure projects. Specifically, the simplified values of the estimated rail accidents costs. Accident costs are used for considering the change in the safety. At present, these values, which are also stated in the national methodological resources, are based on statistical data of the entire European Union and thus do not reflect the possible national specifics of projects implemented in the territory of individual Member States. The principle of updating values is from a methodological point of view based on the original calculation principles, however, involves a set of information items on the occurrences that emerged in the past in a specific area. The output of the article is a set of methodological steps considering national conditions when determining the average accident costs, subsequently verified on a case study of the railway network in the Czech Republic. The outputs of the presented article directly build on the results of the research project in which the team of article authors has been involved. The research results refer to different values of accident costs uniformly determined for the entire European Union territory and those determined individually for the conditions of the railway infrastructure in the Czech Republic.
Go to article

Authors and Affiliations

Tomáš Funk
1
ORCID: ORCID
Vít Hromádka
1
ORCID: ORCID
Jana Korytárová
1
ORCID: ORCID
Eva Vítková
1
ORCID: ORCID

  1. Brno University of Technology, Faculty of Civil Engineering, Veverí 331/95, 602 00 Brno, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

In this work, safety analysis at the railway level crossings is presented using advanced mathematical modelling. Resistivity of track subgrade panels is taken into account. The analysis does not refer to the assessment of the current regulations. Specific cases of generalized dynamic system are considered by introducing operations S=Δ, S=P defined in space C(N) of real sequences. In this model, generalized discrete exponential and trigonometric functions that reflect the oscillatory nature of the analysed quantities are used. The advantage of the analyzes is the avoidance of numerical errors. We show also the importance of the resistivity of track subgrade panels in safety at the level crossings. The safety at the level crossings can be increased through providing track subgrade panels with appropriate resistivity to minimize negative effect of stray currents. The results may be used to evaluate selected safety indicators as well as to predict safety levels and to determine the ways of improving safety.
Go to article

Authors and Affiliations

Eligiusz Mieloszyk
1
ORCID: ORCID
Anita Milewska
2
ORCID: ORCID
Sławomir Grulkowski
3

  1. Prof., DSc., PhD., Eng., Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, G. Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
  2. PhD., Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, G. Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
  3. PhD., Eng., Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, G. Narutowicza Str. 11/12, 80-233 Gdańsk, Poland

This page uses 'cookies'. Learn more