Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 29
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This article relates to optimization and assessment of railway polynomial transition curves. The search for the optimum shape meant here the evaluation of the transition curve properties based on chosen dynamical quantity and generation of such a curve shape. In the study, 2-axle rail vehicle was used. The rail model represented 2-axle freight car of the average values of parameters. Mathematically understood optimization methods were also applied. As the transition curve, the authors used polynomials of 9th and 11th degrees. As the criterion of the assessment, the integral of change of lateral acceleration along the route was also used. Wide range of the circular arc radii was applied by the authors. The mentioned radii were: 600 m, 900 m, 1200 m, 2000 m and 3000 m. In the work the results of the optimization – types of the curvatures of the optimum transition curves, as well as the vehicle dynamics were presented.
Go to article

Bibliography

[1] A. Ahmad, J. Ali, “G3 transition curve between two straight lines”, Proc. 5th CGIV’08 IEEE Computer Society, 2008, pp. 154–159, DOI: 10.1109/CGIV.2008.22.
[2] A. Ahmad, R. Gobithasan, J. Ali, “G2 transition curve using quadratic Bezier curve”, Proc. of the Computer Graphics, Imaging and Visualisation Conference, IEEE Computer Society, 2007, pp. 223–228.
[3] Z. Barna, L. Kisgyorgy, “Analysis of hyperbolic transition curve geometry”, Periodica Polytechnica Civil Engineering, 2015, vol. 59, no. 2, pp. 173–178.
[4] J.A. Bonneson, “A kinematic approach to horizontal curve transition design”, Transportation Research Record, 2000, vol. 1737, pp. 1–8.
[5] G. Bosurgi, A. D’Andrea, “A polynomial parametric curve (PPP) for design of horizontal geometry of highways”, Computer-Aided Civil and Infrastructure Engineering, 2012, vol. 24, no. 4, pp. 304–312.
[6] CEN Railway applications – ride comfort for passengers – measurement and evaluation, Brussels: ENV 12299, 2009.
[7] N. Eliou, G. Kaliabetsos, “Anew, simple and accurate transition curve type, for use in road and railway alignment design”, European Transport Research Review, 2014, vol. 6, no. 2, pp. 171–179, DOI: 10.1007/s12544-013-0119-8.
[8] C. Esveld, Modern Railway Track. MRT-Productions, 2001.
[9] S. Fischer, “Comparison of railway track transition curves types”, Pollack Periodica, An International Journal for Engineering and Infrastructure Science, 2009, vol. 4, no. 3, pp. 99–110, DOI: 10.1556/Pollack.4.2009.3.9.
[10] H. Hasslinger, Measurement proof for the superiority of a new track alignment design element, the so-called “Viennese Curve”, ZEVRail, 2005.
[11] E. Jacobs, “Die sinusoide als neuzeitliches trassierungselement”, Vermessung-Ingenieur, 1987, vol. 87, pp. 3–9.
[12] Q.P. Jiang, “Study of the new type of transition curve of road”, China Journal of Highway and Transportation”, 2002, vol. 15, no. 2.
[13] D. Kahler, “Ein übergangsbogen für den S-Bahnverkehr mit linearer Überhöhungsrampe”, Vermessungstechnik und Raumordnung, 1990, vol. 52, pp. 10–18.
[14] D. Kahler, “Übergangsbögen zur ausrundung der neigungswechel im schienen-schnellverkehr”, Zeitschrift für Vermessungwesen, 1990, vol. 115, pp. 154–162.
[15] W. Kik, “Comparison of the behaviour of different wheelset-trackmodels”, in Proceedings of the 12th IAVSD Symposium on the Dynamics of Vehicles on Roads and on Tracks, Vehicle System Dynamics, G. Sauvage, Ed. Amsterdam Swets & Zeitlinger, 1992, 20(suppl.), pp. 325–339.
[16] L.T. Klauder, S.M. Chrismer, J. Elkins J., “Improved spiral geometry for high-speed rail and predicted vehicle response”, Rail Track and Structures, 2003, vol. 6, pp. 15–17.
[17] A. Kobryn, “New solutions for general transition curves”, Journal of Surveying Engineering, 2014, vol. 140, no.1, pp. 12–21, DOI: 10.1061/(ASCE)SU.1943-5428.0000113.
[18] W. Koc, “New transition curve adapted to railway operational requirements”, Journal of Surveying Engineering, 2019, vol. 145, no. 3, DOI: 10.1061/(ASCE)SU.1943-5428.0000284
[19] B. Kuvfer, “Optimisation of horizontal alignments for railway – procedure involving evaluation of dynamic vehicle response”, Dissertation, Royal Institute of Technology, Stockholm, 2000.
[20] X. Li, M. Li, C. Ma, J. Bu, L. Zhu, “Analysis on mechanical performances of high-speed railway transition curves”, in Proceedings of the ICCTP 2009, Harbin, China, 5-9 Aug. 2009. pp. 1-8.
[21] X. Li, M. Li, H.Wang, J. Bu, M. Chen, “Simulation on dynamic behaviour of railway transition curves”, in Proceedings of the ICCTP 2010, Beijing, China, 4–8 August 2010, pp. 3349–3357.
[22] X. Li, M. Li, J. Bu, H. Wang, “Comparative analysis on the linetype mechanical performances of two railway transition curves”, China Railway Science, 2009, vol. 30, no. 6, pp. 1–6.
[23] X. Li, M. Li, J. Bu, Y. Shang, M. Chen, “A general method for designing railway transition curve algebraic equations”, in Proceedings of the ICCTP 2010, Beijing, China, 4–8 August 2010, pp. 3340–3348.
[24] S.L. Lian, J.H. Liu, X.G. Li, W.X. Liu, “Test verification of rationality of transition curve parameters of dedicated passenger traffic railway lines”, Journal of the China Rail Society, 2006, vol. 28, no. 6, pp. 88–92.
[25] M. Lindahl, Track geometry for high-speed railways, Department of Vehicle Engineering Royal Institute of Technology Stockholm, 2001.
[26] X.Y. Long, Q.C. Wei, F.Y. Zheng, “Dynamic analysis of railway transition curves”, Proc. IMechE, Part F: Journal Rail and Rapit Transit, 2010, vol. 224, no. 1, pp. 1–14, DOI: 10.1243/09544097JRRT287.
[27] Y. Michitsuji, Y. Suda, “Improvement of curving performance with assist control on transition curve for single-axle dedicated passenger traffic railway lines”, Journal of the China Railway Society, 2006, vol. 28, no. 6, pp. 88–92.
[28] A. Pirti, M.A. Yucel, T. Ocalan, “Transrapid and the transition curve as sinusoid”, Tehnicki Vjesnik, 2016, vol. 23, no. 1, pp. 315–320.
[29] J. Pombo, J. Ambrosio, “General spatial curve joint for rail guided vehicles: kinematics and dynamics”, Multibody System Dynamics, 2003, vol. 9, no. 3, pp. 237–264.
[30] T.I Shen, C.H. Chang, K.Y. Chang, C.C. Lu, “A numerical study of cubic parabolas on railway transition curves”, Journal of Marine Science and Technology, 2013, vol. 21, no. 2, pp. 191–197.
[31] Y. Suda, W. Wang, H. Komine, Y. Sato, T. Nakai, Y. Shimokawa Y, “Study on control of air suspension system for railway vehicle to prevent wheel load reduction at low-speed transition curve negotiation”, Vehicle System Dynamics 2006, vol. 44(supl.), pp. 814–822.
[32] Y. Tanaka, “On the transition curve considering effect of variation of the train speed”, ZAMM – Journal of Applied Mathematics and Mechanics, 2006, vol. 15, no. 5, pp. 266–267.
[33] E. Tari, O. Baykal, “A new transition curve with enhanced properties”, Canadian Journal of Civil Engineering, 2005, vol. 32, no. 5, pp. 913–923, DOI: 10.1139/105-051.
[34] D. Vermeij, “Design of a high speed track”, HERON, 2000, vol. 45, no. 1, pp. 9–23.
[35] Y.L. Xu, Z.L, Wang, G.Q. Li, S. Chen, Y.B. Yang, “High-speed running maglev trains interacting with elastic transitional viaducts”, Engineering Structures, 2019, vol. 183, pp. 562–578.
[36] J.Q. Zhang, Y.H. Huang, F. Li, “Influence of transition curves on dynamics performance of railway vehicle”, Journal of Traffic and Transportation Engineering, 2010, vol. 10, no. 4, pp. 39–44.
[37] K. Zboinski, “Dynamical investigation of railway vehicles on a curved track”, European Journal of Mechanics A-Solids, 1998, vol. 17, no. 6.
[38] K. Zboinski, “Numerical studies on railway vehicle response to transition curves with regard to their different shape”, Archives of Civil Engineering, 1998, vol. 44, no. 2, pp. 151–18.
[39] K. Zboinski, P. Woznica, “Optimisation of railway polynomial transition curves: a method and results”, in Proceedings of the First International Conference on Railway Technology: Research, Development and Maintenance. Stirlingshire, UK: Civil-Comp Press, 2012.
[40] K. Zboinski, P. Woznica, “Combined use of dynamical simulation and optimisation to form railway transition curves”, Vehicle System Dynamics, 2018, vol. 56, no. 9, pp. 1394–1450, DOI: 10.1080/00423114.2017.1421315.
Go to article

Authors and Affiliations

Krzysztof Zboinski
1
ORCID: ORCID
Piotr Woznica
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Transport, ul. Koszykowa 75, 00-662 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article concerns assessing the dynamical properties and shape optimization of railway transition curves (TCs) for the wide range – 600, 900, 1200, 2000, 3000, and 4000 m – of circular arc radii. The search for the optimum shape means in the current article the evaluation of the curve properties based on chosen dynamical quantities and generation of such shapes with use of a mathematically understood optimization method. As a transition curve in the studies performed, the authors adopted a polynomial of n-th degree, where n = 9 and 11. In the study one model of rail vehicle was used. The model represented 2-axle freight car of the average values of parameters. The authors took the so-called standard transition curves of 9th and 11th degrees, and 3rd degree parabola as initial transition curves in the optimization processes. As quality functions (evaluation criteria) the authors used three functions concerning lateral and vertical vehicle dynamics, and creepages in wheel-rail contact. In this work, the results of the optimization – types of the curvatures of the optimum transition curves – were presented and compared.
Go to article

Authors and Affiliations

Krzysztof Zboinski
1
ORCID: ORCID
Piotr Woznica
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Transport, ul. Koszykowa 75, 00-662 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The hyperloop concept is not new, but for many years it was hard for engineers to believe that it could be economically and technically feasible. Nowadays some technical solutions, which could enable construction and operation of a guided transport system based on hyperloop concept, are much more imaginable. Therefore a number of start-up companies are working on comprehensive proposals and chosen technologies aiming at creating the fifth transport mode thanks to innovative concepts, new technologies, and chosen railway, air transport, and space technologies. As new transport mode is expected to offer transport with high speed nearly equal to the speed of sound its feasibility will strongly depend also on coherency between transport means and transport infrastructure in a scale of a future fifth transport mode continent-wide transport network. To meet this challenge railway and start-up companies work together in two streams – in the formal framework of the European standardisation to prepare future hyperloop related EN standards and in research and development projects. The scale of required wide technical coherency on one side and the diversification of products and existence of different developers/producers/contracting entities providing infrastructure and transport means and creating market on the other side contradict if appropriate rules are not set precisely early enough. Such rules in railway transport are based on interoperability concept supported by agreed stable essential requirements and defined in the Railway Interoperability Directive and Technical Specifications for Interoperability. Paper presents findings regarding poor applicability of the railway interoperability to the hyperloop type transport systems at their early stage of development as well as challenges and proposed approaches for the dedicated hyperloop coherency approach – the hyperoperability as it is being discussed in the framework of the Hypernex European project.
Go to article

Authors and Affiliations

Agnieszka Kaczorek
1
ORCID: ORCID
Iwona Karasiewicz
1
ORCID: ORCID
Magdalena Kycko
1
ORCID: ORCID
Marek Pawlik
1
ORCID: ORCID
Krzysztof Polak
1
ORCID: ORCID
Wojciech Rzepka
1
ORCID: ORCID

  1. Railway Research Institute, Chłopickiego 50, 04-275 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Particular diligence in the preparation of documentation and conducting a tender procedure for construction works must be made by public contracting entities, who are subject to additional restrictions. In Poland, the largest public contracting entities are the sectoral ones. These are the entities (defined in Art. 3 of the Public Procurement Law Act) operating in the sectors of water management, energy, transport and postal services. The paper presents the analysis of tender offers for the execution of construction works or design and execution of construction works related to the reconstruction, construction and revitalization of railway lines, announced after the amendment to the Public Procurement Law on June 22, 2016. The considered examples are selected tender procedures covering the scope of construction and assembly works on railway lines throughout the country. The authors paid particular attention to the tender criteria applied and the requirements for the potential contractors for works in the field of railway infrastructure.

Go to article

Authors and Affiliations

A. Leśniak
F. Janowiec
Download PDF Download RIS Download Bibtex

Abstract

Aiming at the problems of the negative sequence governance and regenerative braking energy utilization of electrified railways, a layered compensation optimization strategy considering the power flow of energy storage systems was proposed based on the railway power conditioner. The paper introduces the topology of the energy storage type railway power conditioner, and analyzes its negative sequence compensation and regenerative braking energy utilization mechanism. Considering the influence of equipment capacity and power flow of the energy storage system on railway power conditioner compensation effect, the objective function and constraint conditions of the layered compensation optimization of the energy storage type railway power conditioner were constructed, and the sequential quadratic programming method was used to solve the problem. The feasibility of the proposed strategy is verified by a multi-condition simulation test. The results show that the proposed optimization compensation strategy can realize negative sequence compensation and regenerative braking energy utilization, improve the power factor of traction substations when the system equipment capacity is limited, and it also has good real-time performance.
Go to article

Authors and Affiliations

Ying Wang
1
ORCID: ORCID
Yanqiang He
1
ORCID: ORCID
Xiaoqiang Chen
1
Miaomiao Zhao
1
Jing Xie
2

  1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070 China
  2. Xi’an Rail Transit Group Co., LTD Operation Branch Xi’an, 710000 China
Download PDF Download RIS Download Bibtex

Abstract

The analysis of ecological hazards on soil pollution by oil products has been provided in the impact zone of the railway. The results of oil product migration in soils in the area of influence on section Lviv–Khodoriv are given. To study this problem, a method was used to take soil samples according to the standard DSTU ISO 10381-4: 2005. To determine the content of petroleum products used the method MVV No. 081/12-0116-03 Pochvy. Based on the results of the study it was found that contamination with petroleum products in the study area exceeds the norm in the area of influence of the railway at a distance of 5 to –50 m on average 3.5 times. It is proposed to make management decisions to prevent violations of the sanitary protection zone of the railway and the placement of agricultural plots on it. For rehabilitation of contaminated soils, it is advisable to use a natural sorbent – glauconite, which is widespread in the bowels of Ukraine. The adsorption capacity of glauconite relative to diesel fuel has been experimentally established. According to our experiments it is proved the high efficiency of the proposed sorbent, which is 90%. Therefore, in the future it is necessary to periodically monitor the condition of the soil in the area to prevent pollution. This study proves that this practice is necessary.
Go to article

Authors and Affiliations

Oksana Chayka
1
ORCID: ORCID
Igor Petrushka
1
ORCID: ORCID
Maria Ruda
1
ORCID: ORCID
Nadiya Paranyak
1
ORCID: ORCID
Olena Matskiv
1
ORCID: ORCID

  1. Lviv National Polytechnic University, Faculty of Ecological Safety and Environmental Protection, Stepana Bandery St, 12, Lviv, Lviv Oblast, 79000, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the impact of exceeding the railway rails lifespan which usually causes a railway structural failure, thus an accident. The research highlights the rails’s high degradation, especially on the running area, consisting in 60-70% weight loss by advanced wear of the rail, followed by fatigue fracture caused by alternating cyclic stresses that initiates the crack and also by tensile stresses resulting in the crack growth. The chemical composition, structural and mechanical properties were analyzed in order to establish the causes that led to the railway rails rupture.
Go to article

Authors and Affiliations

A.C. Berbecaru
1
ORCID: ORCID
G. Coman
1
ORCID: ORCID
S. Ciucă
1
ORCID: ORCID
I.A. Gherghescu
1
ORCID: ORCID
M.G. Sohaciu
1
ORCID: ORCID
C. Grădinaru
1
ORCID: ORCID
C. Predescu
1
ORCID: ORCID

  1. Politehnica University of Bucharest, Faculty of Materials Science and Engineering, 313 Splaiul Independenței, 060042 Bucharest, Romania
Download PDF Download RIS Download Bibtex

Abstract

This work deals with the effect of austempering temperature and time on the microstructure and content of retained austenite of a selected cast steel assigned as a material used for frogs in railway crossovers. Bainitic cast steel was austempered at 400°C, 450°C and 500°C for two selected times (0.5 h, 4.0 h) to study the evolution of the microstructure and retained austenite content. The microstructure was characterized by optical microscopy, X-ray diffraction analyses (XRD), and hardness tests. Phase transformations during and after austempering were determined by dilatometric methods.

The increase in isothermal temperature causes an increase in time to start of bainitic transformation from 0.25 to 1.5 s. However, another increase in temperature to 500°C shifts the incubation time to as much as 11 s. The time after which the transformations have ended at individual temperatures is similar and equal to about 300 s (6 min.). The dilatation effects are directly related to the amount of bainite formation. Based on these we can conclude that the temperature effect in the case of cast steel is inversely proportional to the amount of bainite formed. The largest effect can be distinguished in the case of the sample austempered at 400°C and the smallest at 500°C. Summarizing the dilatometric results, we can conclude that an increase in austempering temperature causes an increase in austenite stability. In other words, the chemical composition lowers (shifts to lower temperatures) the range of bainite transformation. It is possible that at higher austempering temperatures we will receive only stable austenite without any transformation. This is indicated by the hatched area in Figure 4b. This means that the heat treatment of cast steel into bainite is limited on both sides by martensitic transformation and the range of stable austenite. The paper attempts to estimate the content of retained austenite with X-ray diffraction.

Go to article

Authors and Affiliations

S. Parzych
R. Dziurka
ORCID: ORCID
M. Goły
B. Kulinowski
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the following paper is to present the experimental field investigations in jointless railway track subjected to the author’s generated imperfections on its static work. The main concept for the executed investigations is to induce an intentional imperfection (both a concave and convex irregularity) in an actual railway track, propose a way of appropriate measurement (using the PONTOS system), and utilize author’s field investigations results to calibrate necessary parameters for theoretical calculations. An experimental formula describing the value of the force transferred from the rail to the railway sleeper on the grounds of the survey site caused by a locomotive is provided. Furthermore, the deflection of the chosen railway rail and sleeper due to the generated imperfection is subjected to analysis. Finally the objective of the present consideration is to resolve the calculations into the beam element such that the results can be used in computational railway practice. The scheme of the so-called a “hanging sleeper” is particularly unfavourable, a gap arises between the sleeper and the foundation, for which the significant changes appear, especially in the rail deflections and stresses. A work scheme of the railway track elements is described on the generated short concave and convex irregularity.
Go to article

Authors and Affiliations

Włodzimierz Andrzej Bednarek
1

  1. Poznan University of Technology, Faculty of Civil and Transport Engineering, Institute of Civil Engineering, Division of Bridges and Railway Engineering, ul. Piotrowo 5, 60-965 Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

Almost every construction investment should contain elements of risk forecasting, whose validity depends, among other things, on the correct assessment of potential threats. These risks were defined by the Authors as risk factors that were characterized and then grouped on the basis of performed research in the scope of their identification. Due to lack of method of scheduling railway investments on the construction market, including risk assessment, a research effort was undertaken [14-17], the result of which is the proposed method. The article presents the main assumptions of the original method of rail investment planning, which on the one hand, will take into account the impact of potential threats identified previously by the Authors, and, on the other, will allow project managers to refer to the conditions in which the implementation of a specific facility is planned. The assumption was made that the method, relatively easy to implement, supported by an appropriate computational program, will encourage teams planning the implementation of railway undertakings to its application and will improve the reliability of the schedules they develop.

Go to article

Authors and Affiliations

J. Kowalski
M. Poloński
Download PDF Download RIS Download Bibtex

Abstract

The dynamic analyses are of key importance in the cognitive process in terms of the correct operation of structures loaded with time alternating forces. The development of vehicle industry, which directly results in an increase in the speed of moving vehicles, forces the design of engineering structures that ensure their safe use. The authors of the paper verified the influence of speed and vehicle parameters such as mass, width of track of wheels and their number on the values of displacements and accelerations of selected bridge elements. The problem was treated as the case study, because the analyses were made for one bridge and the passage of three types of locomotives. The response of the structure depends on the technological solutions adopted in the bridge, its technical condition, as well as the quotient of the length of the object and vehicle. A new bridge structure was analyzed and dynamic tests were carried out for trainsets consisting of one and two locomotives. During the actual dynamic tests, the structure was loaded with a locomotive moving at a maximum speed of 160 km/h.

Go to article

Authors and Affiliations

Michał Jukowski
Artur Zbiciak
ORCID: ORCID
Bartosz Skulski
Download PDF Download RIS Download Bibtex

Abstract

The issue of assessing socio-economic impacts represent a key element of the decisionmaking process on the implementation of major public investment projects. The correctness of the decision depends both on the chosen principle of the socio-economic analysis and the input data. The presented article focuses on updating selected input values for the socio-economic assessment of railway infrastructure projects. Specifically, the simplified values of the estimated rail accidents costs. Accident costs are used for considering the change in the safety. At present, these values, which are also stated in the national methodological resources, are based on statistical data of the entire European Union and thus do not reflect the possible national specifics of projects implemented in the territory of individual Member States. The principle of updating values is from a methodological point of view based on the original calculation principles, however, involves a set of information items on the occurrences that emerged in the past in a specific area. The output of the article is a set of methodological steps considering national conditions when determining the average accident costs, subsequently verified on a case study of the railway network in the Czech Republic. The outputs of the presented article directly build on the results of the research project in which the team of article authors has been involved. The research results refer to different values of accident costs uniformly determined for the entire European Union territory and those determined individually for the conditions of the railway infrastructure in the Czech Republic.
Go to article

Authors and Affiliations

Tomáš Funk
1
ORCID: ORCID
Vít Hromádka
1
ORCID: ORCID
Jana Korytárová
1
ORCID: ORCID
Eva Vítková
1
ORCID: ORCID

  1. Brno University of Technology, Faculty of Civil Engineering, Veverí 331/95, 602 00 Brno, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

In this work, safety analysis at the railway level crossings is presented using advanced mathematical modelling. Resistivity of track subgrade panels is taken into account. The analysis does not refer to the assessment of the current regulations. Specific cases of generalized dynamic system are considered by introducing operations S=Δ, S=P defined in space C(N) of real sequences. In this model, generalized discrete exponential and trigonometric functions that reflect the oscillatory nature of the analysed quantities are used. The advantage of the analyzes is the avoidance of numerical errors. We show also the importance of the resistivity of track subgrade panels in safety at the level crossings. The safety at the level crossings can be increased through providing track subgrade panels with appropriate resistivity to minimize negative effect of stray currents. The results may be used to evaluate selected safety indicators as well as to predict safety levels and to determine the ways of improving safety.
Go to article

Authors and Affiliations

Eligiusz Mieloszyk
1
ORCID: ORCID
Anita Milewska
2
ORCID: ORCID
Sławomir Grulkowski
3

  1. Prof., DSc., PhD., Eng., Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, G. Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
  2. PhD., Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, G. Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
  3. PhD., Eng., Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, G. Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The numerous overruns of the investor’s budget during tenders for the construction of railway infrastructure in Poland resulted in the widespread use of a new procedure for awarding public contracts – electronic auction. This procedure has many advantages and potential risks. One of the biggest benefits for an investor is the potential gains from reducing bids. Contractors competing against each other allow for the achievement of optimal prices for the planned construction investment. However, this may cause the originally calculated risks, should they materialize, lead to significant budget overruns. This, in turn, may imply further negative consequences, including exceeding the assumed investment deadlines. The article presents a method of modeling the influence of an electronic auction on a tender procedure with the use of a Bayesian network. Data from completed tender procedures announced by the PKP Polskie Linie Kolejowe S.A. were used to build the network. The created network was then validated, verified and calibrated using new data from 8 tender procedures.
Go to article

Authors and Affiliations

Filip Janowiec
1
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Civil Engineering, Ul.Warszawska 24, 31-155 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Integration of transport subsystems in transfer nodes of public transport in Poznań based on city railway stations, Poznań, being one of the strongest urban centers in the country, has a significant zone of impact (functional area). A natural consequence of this development model are significant communication issues caused by dynamic development of the suburban area. The solution of those issues is assumed to be basing the public communication system on a railway junction and, on its basis, creating the Poznań Metropolitan Railway. However, to ensure efficient functioning of such a system the need arises to integrate it with other systems of transport using transfer nodes. The aim of this article is to illustrate the potential of creating a polycentric system of multi-modal transfer nodes, based on existing city railway stations (district stations). The study focuses on the perspective of the passenger and the primary research method is the in-depth interview. This enabled to learn the opinion and identify the needs of passengers who use the facilities which are the subject of this study. The study also concentrated on analyzing thee communication behaviors of passengers and analyzing thee functioning of city stations themselves. Additionally, information was also acquired regarding the approximate destination of the passengers’ travel, which further allowed to specify the hypothetical impact range of individual city stations. Results of the study allowed to develop a range of recommendations intended to optimize the functioning of selected city railway stations, from a technical, as well as organization and management perspective. They have the potential to become a basis for developing a concept of sustainable public transport with a metropolitan reach.

Go to article

Authors and Affiliations

Wojciech Wachowiak
Download PDF Download RIS Download Bibtex

Abstract

Maintaining railway turnout operability is crucial for ensuring railway transport safety. Electric heating of railway turnouts is a significant technical and economic issue. The classical heating is characterised by high power consumption. For this reason, research is needed to optimise the current system. This paper presents results of a numerical analysis and of experimental researches. The numerical analysis was carried out using the ANSYS software. There was conducted a numerical comparative analysis of energy loss during heating performed using two different heaters. Including the classical method and a heater thermally insulated from a rail. In the first step, heating of a working space filled with a substitute snow model was considered. The snow-covered surface area was held within the working space of the turnout. It was assumed that the snow substitute material had thermal properties approximately the same as real light snow. It was also assumed that the material is in the solid state which would not undergo a phase change. In the next step, a real snow model that included the phase change process was taken into account. The energy efficiency and heat distribution in the turnout have been analysed and compared. The experimental researches were carried out in a physical model. The results showed that the use of a contactless heater results in creating a larger area over which emitted heat affected snow in the working space. Consequently, more snow was melted around the contactless heater than the classic one. This experimental observation supported the results of the numerical analyses presented previously.

Go to article

Authors and Affiliations

Mateusz Flis
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a summary of research on the possibility of influencing the state of residual stresses in railway rails by changing the pass design of vertical and horizontal straightener rollers and optimising their distribution on the rail perimeter. The presented results are devoted to the influence of profiled rollers on the level of residual stresses. A wide range of theoretical considerations were carried out based on the use of the finite element method using the commercial Forge software package. In order to verify the results of the theoretical considerations most reliably, a series of “in situ” experiments were conducted in industrial conditions on an existing production line. The tests were carried out on 120 meters long 60E1 railway rails. A significant reduction in the level of residual stresses compared to the standard requirements was achieved.
Go to article

Authors and Affiliations

S. Żak
1
ORCID: ORCID
D. Woźniak
2
ORCID: ORCID

  1. ArcelorMittal Poland S.A., Al. Józefa Piłsudskiego 92, 41-300 Dąbrowa Górnicza, Poland
  2. Institute for Ferrous Metallurgy, ul. Karola Miarki 12, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

In order to improve the operational reliability and service life of the main systems, components and assemblies (SCA) of railway transport (RT), it is necessary to timely detect (diagnose) their defects, including the use of the methods of intellectual analysis and data processing.
One of the promising approaches to the synthesis of the SCA functional control system is the use of intelligent technology (INTECH) methods. This technology is based on maximizing the information capacity of an automated decision support system for detecting faults during its training.
Go to article

Bibliography

[1] M. Schickert, I. Aydin, M. Karak¨ose, E. & Akin, ”A new contactless fault diagnosis approach for pantograph-catenary system,” in MECHATRONIKA, 2012 15th International Symposium, pp. 1-6, IEEE, 2012.
[2] A. Le Mortellec, J. Clarhaut, Y. Sallez, D. Berger, & Trentesaux, ”Embedded holonic fault diagnosis of complex transportation systems,” Engineering Applications of Artificial Intelligence, 26(1), pp. 227-24, 2013.
[3] Ph M. Papaelias, C. Roberts, L.C. & Davis, ”A review on non-destructive evaluation of rails: state-of-the-art and future development,” Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 222(4), pp. 367-384, 2008.
[4] J. Seeliger, Mackel, D. Georges, ”Measurement and diagnosis of process-disturbing oscillations in high-speed rolling plants,” in Proc. XIV IMEKO World Congress, 2002.
[5] X.S. Jin, J. Guo, X.B. Xiao, Z.F. Wen, & Z.R. Zhou, ”Key scientific problems in the study on running safety of high speed trains,” Engineering Mechanics, 26 (Sup II), pp. 8–25, 2009.
[6] L. Mariani, F. Pastore, & M. Pezze, ”Dynamic analysis for diagnosing integration faults,” IEEE Transactions on Software Engineering, 37(4), pp. 486-508, 2011.
[7] Y.C. Huang, H.C. Sun, ”Dissolved gas analysis of mineral oil for power transformer fault diagnosis using fuzzy logic,” IEEE Transactions on Dielectrics and Electrical Insulation, 20(3), pp. 974-981, 2013.
[8] Orb´an, Zolt´an, and Marc Gutermann, ”Assessment of masonry arch railway bridges using non-destructive in-situ testing methods,” Engineering Structures, 31.10 (2009): pp. 2287-2298, 2009.
[9] Yella, Siril, M. S. Dougherty, and N. K. Gupta, ”Artificial intelligence techniques for the automatic interpretation of data from non-destructive testing,” Insight-Non-Destructive Testing and Condition Monitoring, 48.1: pp. 10-20, 2006.
[10] P.S. Bhowmik, S. Pradhan, M. Prakash, ”Fault diagnostic and monitoring methods of inductionmotor: a review,” International Journal of Applied Control, Electrical and Electronics, Vol. 1, pp. 1-18, 2013.
[11] Petr Dolezel, Pavel Skrabanek, Lumir Gago, ”Pattern recognition neural network as a tool for pest birds detection,” Computational Intelligence, SSCIIEEE Symposium Series on, pp. 1-6, 2016.
[12] V. Lakhno, Y. Tkach, T. Petrenko, S. Zaitsev, & V. Bazylevych, V. ”Development of adaptive expert system of information security using a procedure of clustering the attributes of anomalies and cyber attacks,” Eastern-European Journal of Enterprise Technologies, (6 (9)), pp. 32- 44, 2016.
[13] V. Lakhno, ”Creation of the adaptive cyber threat detection system on the basis of fuzzy feature clustering,” Eastern-European Journal of Enterprise Technologies, 2.9 2016:18, 2016.
[14] V.A. Lakhno, P.U. Kravchuk, V.P. Malyukov, V.N. Domrachev, L.V. Myrutenko, O.S. Piven, ”Developing of the cyber security system based on clustering and formation of control deviation signs,” Journal of Theoretical and Applied Information Technology, Vol. 95, Iss. 21, pp. 5778-5786.
[15] A.S. Dovbish, ”Osnovi proektuvannja ntelektualnih sistem” / A.S. Dovbish. Sumi: SumDU, 171 p., 2009.
[16] X. Zhang, N. Feng, Y. Wang, & Y. Shen, ”Acoustic emission detection of rail defect based on wavelet transform and Shannon entropy,” Journal of Sound and Vibration, p. 419-432, 2015.
[17] A. Giantomassi, F. Ferracuti, S. Iarlori, G. Ippoliti, & S. Longhi, ”Electric motor fault detection and diagnosis by kernel density estimation and Kullback–Leibler divergence based on stator current measurements,” IEEE Transactions on Industrial Electronics, 2015, 62(3), pp. 1770- 1780, 2015.
Go to article

Authors and Affiliations

Ayaulym Oralbekova
1
Marzhana Amanova
1
Kamila Rustambekova
1
Zhanat Kaskatayev
1
Olga Kisselyova
2
Roza Nurgaliyeva
1

  1. Kazakh University Ways of Communications, Almaty, Kazakhstan
  2. Kazakh Academy of Transport and Communications named after M. Tynyshpayev, Almaty, Kazakhstan
Download PDF Download RIS Download Bibtex

Abstract

Electrified railways are an example of AC single phase distribution networks. A non-negligible amount of active and nonactive power may be related to harmonics, especially for distorted highly-loaded systems. The paper considers the relevance of the harmonic power terms in order to identify distortion sources in a single-point perspective, in line with the approach of EN 50463 for the quantification of the power and energy consumption. Some single-point Harmonic Producer Indicators (HPI) based on harmonic active power direction and nonactive distortion power terms are reviewed and evaluated using pantograph voltage and current measured during several hours of runs in two European AC railways (operated at 16.7 and 50 Hz). The HPI based on active power shows to be consistent and provides detailed information of rolling stock characteristic components under variable operating conditions; those based on nonactive distortion power are global indexes and hardly can operate with complex harmonic patterns in variable operating conditions.

Go to article

Authors and Affiliations

Andrea Mariscotti
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of the last stage of work on the impact of changes in the roll pass design on the state of residual stresses in railway rails. The discussed stage includes the summary of industrial experiments of rolling 60E1 rails with a length of 120 meters using a modified pass design of roll grooves. The rolling technology has been deeply modified, ranging from the finishing stand, through the pre-finishing stand, to the semi-finishing stand. The rails in this experiment were cooled using standard cooling technology and then straightened using innovative vertical straightener shaped rollers. Residual stresses were tested using the strain gauge method and the hole-drilling strain gauge method by drilling a hole in the rail axis and at a distance of 14 millimetres from its axis. The resulting tensile stresses in the rail foot were reduced to an average level of less than 43% in relation to the requirements of the EN13674-1 standard.
Go to article

Authors and Affiliations

S. Żak
1
ORCID: ORCID
D. Woźniak
2
ORCID: ORCID

  1. ArcelorMittal Poland S.A., 92 Józefa Piłsudskiego 9 Av. 41-308 Dąbrowa Górnicza, Poland
  2. Łukasiewicz Research Network – Institute for Ferrous Metallurgy, 12 Karola Miarki Str., 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article discusses the applicability of a novel method to determine horizontal curvature of the railway track axis based on results of mobile satellite measurements. The method is based on inclination angle changes of a moving chord in the Cartesian coordinate system. In the presented case, the variant referred to as the method of two virtual chords is applied. It consists in maneuvering with only one GNSS (Global Navigation Satellite System) receiver. The assumptions of the novel method are formulated, and an assessment of its application in the performed campaign of mobile satellite measurements is presented. The shape of the measured railway axis is shown in the national spatial reference system PL-2000, and the speed of the measuring trolley during measurement is calculated based on the recorded coordinates. It has been observed that over the test section, the curvature ordinates differ from the expected waveform, which can be caused by disturbances of the measuring trolley trajectory. However, this problem can easily be overcome by filtering the measured track axis ordinates to obtain the correct shape – this refers to all track segments: straight sections, circular arcs and transition curves. The virtual chord method can also constitute the basis for assessing the quality of the recorded satellite signal. The performed analysis has shown high accuracy of the measuring process.
Go to article

Bibliography

  1. British railway track design, construction and maintenance. 6th ed., The Permanent Way Institution, London, UK, 1993.
  2. 883.2000 DB_REF-Festpunktfeld, DB Netz AG, Berlin, Germany, 2016.
  3. Railway applications—Track—Track alignment design parameters—Track gauges 1435 mm and wider—Part 1: Plain line, EN 13803-1, CEN, Brussels, Belgium, 2010.
  4. Code of federal regulations title 49 transportation, US Government Printing Office, Washington, DC, USA, 2008.
  5. Standard: Railway Surveying, Version 1.0, T HR TR 13000 ST, NSW Government (Transport for NSW), Sydney, Australia, 2016.
  6. NR/L3/TRK/0030 NR_Reinstatement of Absolute Track Geometry (WCRL Routes), no. 1, NR, London, UK, 2008.
  7. Standardy Techniczne – Szczegółowe warunki techniczne dla modernizacji lub budowy linii kolejowych do predkości Vmax   200 km/h (dla taboru konwencjonalnego) / 250 km/h (dla taboru z wychylnym pudłem) – TOM I – DROGA SZYNOWA – Załącznik ST-T1_A6: Układy geometryczne torów, PKP Polskie Linie Kolejowe, Warszawa, 2018.
  8.  L. Wang et al., “Validation and assessment of multi-GNSS real-time Precise Point Positioning in simulated kinematic mode using IGS real-time service,” Remote. Sensing, vol. 10, pp. 1‒19, 2018, doi: 10.3390/rs10020337.
  9.  Y. Quan, and L. Lau, “Development of a trajectory constrained rotating arm rig for testing GNSS kinematic positioning,” Measurement, vol. 140, pp. 479–485, 2019, doi: 10.1016/j.measurement.2019.04.013.
  10.  R.M. Alkan, “Cm-level high accurate point positioning with satellite-based GNSS correction service in dynamic applications,” J. Spatial Sci., vol. 66, no. 2, pp. 351‒359, 2019, doi: 10.1080/14498596.2019.1643795.
  11.  W. Domski, and A. Mazur, “Input-output decoupling for a 3D free-floating satellite with a 3R manipulator with state and input disturbances,” Bull. Pol. Acad. Sci. Tech. Sci., vol.  67, no. 6, pp. 1031‒1039, 2019, doi: 10.24425/bpasts.2019.130885.
  12.  S. Wu et al., ”Improving ambiguity resolution success rate in the joint solution of GNSS-based attitude determination and relative positioning with multivariate constraints,” GPS Solutions, vol. 24, no. 1, article number: 31, 2020, doi: 10.1007/s10291-019-0943-y.
  13.  W. Koc and C. Specht, “Application of the Polish active GNSS geodetic network for surveying and design of the railroad,” in Proc. First International Conference on Road and Rail Infrastructure – CETRA 2010, Opatija, Croatia, Univ. of Zagreb, 2010, pp. 757‒762.
  14.  W. Koc and C. Specht, “Selected problems of determining the course of railway routes by use of GPS network solution,” Arch. Transp., vol. 23, no. 3, pp. 303‒320, 2011.
  15.  W. Koc, C. Specht, and P. Chrostowski, “Finding deformation of the straight rail track by GNSS measurements,” Annu. Navig., no. 19, part 1, pp. 91‒104, 2012, doi: 10.2478/v10367-012-0008-6.
  16.  W. Koc, C. Specht, P. Chrostowski, and J. Szmagliński, “Analysis of the possibilities in railways shape assessing using GNSS mobile measurements,” MATEC Web Conf., vol. 262, no. 4, p.  11004(1‒6), 2019, doi: 10.1051/matecconf/201926211004.
  17.  W. Koc, C. Specht, J. Szmagliński, and P. Chrostowski, “A method for determination and compensation of a cant influence in a track centerline identification using GNSS methods and inertial measurement,” Appl. Sci., vol. 9, no. 20, p.  4347(1‒16), 2019, doi: 10.3390/ app9204347.
  18.  C. Specht and W. Koc, “Mobile satellite measurements in designing and exploitation of rail roads,” Transp. Res. Procedia, vol. 14, pp. 625‒634, 2016, doi: 10.1016/j.trpro.2016.05.310.
  19.  C. Specht, W. Koc, P. Chrostowski, and J. Szmagliński, “The analysis of tram tracks geometric layout based on mobile satellite measurements,” Urban Rail Transit, vol. 3, no. 4, pp.  214‒226, 2017, doi: 10.1007/s40864-017-0071-3.
  20.  C. Specht, W. Koc, P. Chrostowski, and J. Szmagliński, “Accuracy assessment of mobile satellite measurements in relation to the geometrical layout of rail tracks,” Metrol. Meas. Syst., vol. 26, no. 2, pp. 309‒321, 2019, doi: 10.24425/mms.2019.128359.
  21.  P. Dąbrowski et al., “Installation of GNSS receivers on a mobile platform – methodology and measurement aspects,” Scientific Journals of the Maritime University of Szczecin, vol. 60, no.  132, pp. 18‒26, 2019, doi: 10.3390/jmse8010018.
  22.  A. Wilk et al., “Research project BRIK: development of an innovative method for determining the precise trajectory of a railway vehicle,” Transp. Oveview – Przegląd Komunikacyjny, vol. 74, no. 7, pp. 32‒47, 2019, doi: 10.35117/A_ENG_19_07_04.
  23.  L. Marx, “Satellitengestützte Gleisvermessung – auch beim Oberbau,” EI – Eisenbahningenieur, vol. 58, no. 6, pp. 9‒14, 2007.
  24.  Y. Naganuma, T. Yasukuni, and T. Uematsu, “Development of an inertial track geometry measuring trolley and utilization of its high- precision data,” Int. J. Transp. Dev. Integr., vol. 3, no. 3, pp. 271–285, 2019, doi: 10.2495/TDI-V3-N3-271-285.
  25.  C. Qijin et al., “A railway track geometry measuring trolley system based on aided INS,” Sensors, vol. 18, no. 2, p. 538, 2018, doi: 10.3390/ s18020538.
  26.  T. Strübing, “Kalibrierung und Auswertung von lasertriangulations-basierten Multisensorsystemen am Beispiel des Gleisvermessungs- systems RACER II,” Schriften des Instituts für Geodäsie der Universität der Bundeswehr München, Dissertationen, Heft 91, 2015.
  27.  T. Weinold and A. Grimm-Pitzinger, “Die Lagerung der Gleisvermessungen der ÖBB,” Vermessung & Geoinformation, vol. 7, no. 3, pp. 348–352, 2012.
  28. Rail design in Civil 3D, Autodesk, San Rafael, USA, 2019.
  29. An application for preliminary and detailed 3D design of rail infrastructure V8i PL, Bentley Systems, Exton, USA, 2019.
  30. BIM-ready railway design solution, CGS Labs, Ljubljana, Slovenia, 2018.
  31.  W. Koc, “The method of determining horizontal curvature in geometrical layouts of railway track with the use of moving chord,” Arch. Civil Eng., vol. 66, no. 4, pp. 579–591, 2020, doi: 10.24425/ace.2020.135238.
  32.  W. Koc, “Design of rail-track geometric systems by satellite measurement,” J. Transp. Eng., vol. 138, no. 1, pp. 114‒122, 2012, doi: 10.1061/(ASCE)TE.1943-5436.0000303.
  33.  A. Wilk, C. Specht, K. Karwowski et al., “Correction of determined coordinates of railway tracks in mobile satellite measurements,” Diagnostyka, vol. 21, no. 3, pp. 77‒85, 2020, doi: 10.29354/diag/125626.
  34.  A. Wilk et al., “Innovative mobile method to determine railway track axis position in global coordinate system using position measurements performed with GNSS and fixed base of the measuring vehicle,” Measurement, vol. 175, p. 109016, 2021, doi: 10.1016/j. measurement.2021.109016.
  35.  A. Wilk, W. Koc, C. Specht, S. Judek et al., “Digital filtering of railway track coordinates in mobile multi–receiver GNSS measurements,” Sensors, vol. 20, p. 5018(1–20), 2020, doi: 10.3390/s20185018.
  36.  C. Specht et al., “Verification of GNSS measurements of the railway track using standard techniques for determining coordinates,” Remote Sensing, vol. 12, p. 2874(1‒24), 2020, doi: 10.3390/rs12182874.
Go to article

Authors and Affiliations

Władysław Koc
1
ORCID: ORCID
Andrzej Wilk
1
ORCID: ORCID
Cezary Specht
2
Krzysztof Karwowski
1
Jacek Skibicki
1
Krzysztof Czaplewski
2
Slawomir Judek
1
Piotr Chrostowski
3
Jacek Szmagliński
3
Paweł Dąbrowski
2
ORCID: ORCID
Mariusz Specht
2
Sławomir Grulkowski
3
Roksana Licow
3

  1. Gdańsk University of Technology, Faculty of Electrical and Control Engineering, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
  2. Gdynia Maritime University, Faculty of Navigation, al. Jana Pawła II 3, 81-345 Gdynia, Poland
  3. Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The running speed of high-speed trains in the tunnel is as high as 350 km, which is very sensitive to the construction disturbance of the new shield tunnel. Therefore, it is of positive significance to study the influence of shield tunneling on existing high-speed railway lines and tunnel structures and control standards. Combined with centrifuge test and three-dimensional numerical simulation, the dynamic response of shield tunnel undercrossing existing high-speed railway tunnel is studied, and the influence of settlement joint and steel pipe pile reinforcement on existing tunnel is analyzed. Studies have shown that the existence of existing tunnels will reduce the surface settlement caused by tunnel excavation, but this shielding effect will be reduced if the influence of construction joints is considered. Therefore, if the construction joint is not considered in the numerical calculation, the ground deformation will be underestimated and the mechanical performance of the existing tunnel structure will be overestimated. In addition, steel pipe piles can effectively control the settlement of existing tunnels.
Go to article

Authors and Affiliations

Ruizhen Fei
1 2
ORCID: ORCID
Limin Peng
1
ORCID: ORCID
Chunlei Zhang
2
ORCID: ORCID
Jiqing Zhang
2
ORCID: ORCID
Peng Zhang
2
ORCID: ORCID

  1. Central South University, School of Civil Engineering, Changsha, 410075, China
  2. China Railway Design Corporation, Tianjin, 300142, China
Download PDF Download RIS Download Bibtex

Abstract

In order to achieve energy savings and promote on-site integration of photovoltaic energy in electrified railways, a topology structure is proposed for the integration of photovoltaic (PV) and the energy storage system (ESS) into the traction power supply system (TPSS) based on a railway power conditioner (RPC). This paper analyzes the composition and operation principles of this structure. To assess the economic benefits brought by the integration of photovoltaic and energy storage systems, a bilevel optimization model is established, with the objectives of optimizing energy storage capacity configuration and photovoltaic energy integration. The KKT (Karush–Kuhn–Tucker) method is employed to transform the model into a single-layer mixed-integer linear programming model, which is then solved using the CPLEX solver in MATLAB. The research findings indicate that, with the configuration of the ESS, the optimal PV consumption rate achieved is 96.8749%. Compared to a 100% PV consumption rate, the ESS capacity configuration is reduced by 13.14%, and the overall operational cost of the TPSS is at its lowest. The study suggests that the proposed bilevel optimization algorithm can more effectively consider PV consumption, leading to enhanced economic performance of the TPSS operation.
Go to article

Authors and Affiliations

Wei Zhang
1
ORCID: ORCID
Xiaoqiang Chen
1
Ying Wang
1
ORCID: ORCID

  1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University Lanzhou,730070 China
Download PDF Download RIS Download Bibtex

Abstract

Problems concerning structures dynamics are being one of most important subjects in recent investigations associated with railways constructions. The need of modelling of such structures and their behaviour prediction leads to necessity of seeking new approaches, mainly due to highly increasing speeds of vehicles and traffic intensity. Comparative studies carried out on experimental data, measurements and theoretical research show that models based on multi-layered approach supported by semi-analytical approximations of solutions can give new insight into undertaken analyses. More detailed consideration of roads components and their physical properties, along with application of effective estimations allowing to avoid numerical instabilities linked with extremal dynamic variations, can be important tools in obtaining new solutions both, theoretical and engineering. This paper briefly presents a number of multilayer railway track models, with special emphasis on nonlinear track properties. Existing analytical and semi-analytical solution methods are presented with main advantages of new approaches. The theoretical double-beam system with two nonlinear layers is solved and computational examples are presented along with possibility of their transition to other multilayer structures analysis.

Go to article

Authors and Affiliations

Piotr Kozioł
Rafał Pilecki
ORCID: ORCID

This page uses 'cookies'. Learn more