Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Rain gardens are one of the best measures for rainfall runoff and pollutant abatement in sponge city construction. The rain garden system was designed and developed for the problem of severely impeded urban water circulation. The rain gardens monitored the rainfall runoff abatement and pollutant removal capacity for 46 sessions from January 2018 to December 2019. Based on these data, the impact of rain gardens on runoff abatement rate and pollutant removal rate was studied. The results obtained indicated that the rain garden on the runoff abatement rate reached 82.5%, except with extreme rainfall, all fields of rainfall can be effectively abated. The removal rate of suspended solid particles was the highest, followed by total nitrogen and total phosphorus, the total removal rate in 66.35% above. The rain garden is still in the “youth stage”, and all aspects of the operation effect are good.
Go to article

Bibliography

  1. Boogaard, F. C. , Van, D. V. F. , Langeveld, J. G. , Kluck, J. & Van, D. G. N. (2015). Re-moval efficiency of storm water treatment techniques: standardized full scale laborato-ry testing. Urban Water Journal, 14(3-4):pp. 255-262. DOI:10.1080/1573062X.2015.1092562
  2. Chahal, M. K. , Shi, Z. & Flury, M. (2016). Nutrient leaching and copper speciation in compost-amended bioretention systems. Science of the Total Environment, 556, pp. 302-309. DOI:10.1016/j.scitotenv.2016.02.125
  3. Davis, A. P. , Traver, R. G. , Hunt, W. F. , Lee, R. , Brown, R. A. & Olszewski, J. M. (2012). Hydrologic Performance of Bioretention Storm-Water Control Measures. Journal of Hydrologic Engineering, 17(5), pp. 604-614. DOI:10.1061/(ASCE)HE .1943-5584.0000467
  4. Gao, Z. , Zhang, Q, H. , Xie, Y. D. , Wang, Q. , Dzakpasu, M. , Xiong, J. Q. & Wang, X. C.(2022). A novel multi-objective optimization framework for urban green-gray infrastructure implementation under impacts of climate change. Science of The Total Environment, 825: pp. 153954. DOI:10.1016/j.scitotenv.2022.153954
  5. Ghosh, S. P. & Maiti, S. K. (2018). Evaluation of heavy metal contamination in roadside deposited sediments and road surface runoff: a case study. Environmental Earth Sciences, 77(7):267. DOI:10.1007/s12665-018-7370-1
  6. Guo, C. , Li, J. , Li, H. , Zhang, B. , Ma, M. & Li, F.(2018). Seven-Year Running Effect Evaluation and Fate Analysis of Rain Gardens in Xi’an, Northwest China. Water, 10(7). DOI:10.3390/w10070944
  7. Guo, C. , Li, J. K. , Ma, Y. , Li, H, E. , Yuan, M. & Ji, G. Q.(2015). Operation life analysis and value estimation of rainwater garden. Journal of Environmental Science, 38(11), pp. 4391-4399(in Chinese).
  8. Gupta, A. , Thengane, S. K. & Mahajani, S. (2018). CO2 gasification of char from lignocellulosic garden waste: Experimental and kinetic study. Bioresource Technology, 263, pp. 180-191. DOI:10.1016/j.biortech.2018.04.097
  9. Hess, A. , Wadzuk, B. &Welker, A. (2021). Evapotranspiration estimation in rain gardens using soil moisture sensors. Vadose Zone Journal. DOI:10.1002/vzj2.20100
  10. Hong, J. , Geronimo, F. K. , Choi, H. &, Kim, L. H. (2018). Impacts of nonpoint source pollutants on microbial community in rain gardens. Chemosphere, 209, pp. 20-27. DOI:10.1016/j.chemosphere.2018.06.062
  11. Hsieh, C. & Davis, A. P. (2005). Evaluation and optimization of bioretention media for treatment of urban storm water runoff. Journal of Environmental Engineering, 131(11), pp. 1521-1531. DOI: 10.1061/(ASCE)0733-9372(2005)131:11(1521)
  12. Jeong, H., Choi, J.Y., Lee, J., Lim, J. & Ra, R. (2020). Heavy metal pollution by road-deposited sediments and its contribution to total suspended solids in rainfall runoff from intensive industrial areas. Environmental Pollution, 265:15028. DOI:10.1016/j.envpol.2020.115028
  13. Jiang, C. B., Li, J. K., Ma, Y., Li, H. E. & Ruan,T. S. (2012). The Regulating Effect of Rain Garden on Actual Rainfall Runoff. Journal of Soil and Water Conservation, 032(004), pp. 122-127(in Chinese).
  14. Kim, L. H. (2021). Stormwater runoff treatment using rain garden: performance monitoring and development of deep learning-based water quality prediction models. Water, 13(24), 3488. DOI:10.3390/w13243488
  15. Li, L. & Davis, A. P. (2014). Urban stormwater runoff nitrogen composition and fate in bioretention systems. Environmental Science & Technology, 2014, 48(6):3403. DOI: 10.1021/es4055302
  16. Ming-Han Li , Mark Swapp , Myung Hee Kim , Kung-Hui Chu , Chan Yong Sung (2014). Comparing bioretention designs with and without an internal water storage layer for treating highway runoff. Water Environment Research, 86(5), pp. 387-397. DOI: 10.2175/106143013X13789303501920
  17. Li, N. , Meng, Y. , Wang, J. ,Yu, Q. & Zhang, N. Q. (2008). Research on waterlogging reduction Effect of low-impact development measures -- A Case study of ji nan sponge test Area. Journal of Water Resources, 49(12), pp. 1489-1502(in Chinese).
  18. Luo, H. M., Che, W. , Li, J. Q. , Wang, H. L. , Meng, G. H. & He, J. P.(2008). Application of rainwater garden in flood control and utilization. China Water supply and Drainage, 24(06), pp. 48-52(in Chinese).
  19. Cheng, M. , Qin, H. P. , He, K. M. & Xu, H. L. (2018). Can floor-area-ratio incentive promote low impact development in a highly urbanized area? -A case study in Changzhou City, China. Frontiers of Environmental Science & Engineering, 12(2), pp. 1-8.
  20. Morales, V. L. , Gao, B. & Steenhuis, T. S. (2009). Grain Surface-Roughness Effects on Colloidal Retention in the Vadose Zone. Vadose Zone Journal, 8(1), pp. 11-20. DOI:10.2136/vzj2007.0171
  21. Palmer, E. T. , Poor, C. J. , Hinman, C. & Stark, J. D.(2013). Nitrate and Phosphate Removal through Enhanced Bioretention Media: Mesocosm Study. Water Environment Research, 85(9), pp. 823-832. DOI: 10.2175/106143013X13736496908997
  22. Sun, Y. , Wei, X. & Pomeroy, C. A. (2011). Research Status and Prospect of storm and flood resource regulation measures for low-impact Development. Progress in water science, 22(02), pp. 287-293(in Chinese).
  23. Tang, S. C. , Luo, W. , Jia, Z. H. , Li, S. , Wu, Y. & Zhou, M. (2015). Effect of rain garden on storm runoff reduction. Progress in water science, 26(06), pp. 787-794(in Chinese).
  24. Tang, S. C. , Luo, W. , Jia, Z. H. , Li, S. & Wu, Y. (2015). Effect of rain garden on the removal of nitrogen and phosphorus in different forms of occurrence and the effect of preferential flow in soil. Journal of water resources, 46(008), pp. 943-950(in Chinese).
  25. Tang, S. C. , Luo, W. , Jia, Z. H. & Yuan, H. C.(2012). Experimental Study on infiltration rainwater Runoff storage in Xi 'an Rainwater Garden. Journal of soil and water conservation, 26(06), pp. 75-79(in Chinese).
  26. Tang, S. C. , Luo, W. , Jia, Z. H. , Ma, X. Y. & Shao, Z. X. (2018). Influencing factors of rain garden operation effect based on drainable mod model. Progress in Water Science, 29(03), pp. 407-414(in Chinese).
  27. Trowsdale, S. A. & Simcock, R. (2011). Urban stormwater treatment using bioretention. Journal of Hydrology, 397(3-4), pp. 167-174. DOI: 10.1016/j.jhydrol.2010.11.023
  28. Wang, R. H. W. & Chiles, R. (2022). Ecosystem Benefits Provision of Green Stormwater Infrastructure in Chinese Sponge Cities. Environmental Management, 69(3), p. 558-575. DOI: 10.1007/s00267-021-01565-9
  29. Zhang, B. H., Deng, C. X. , Ma, Y. , Li, J, K , Jiang, C. B. & Ma, M. H. (2019). Retention and purification effect of rainwater garden on roof rainwater. China Water supply and Drainage, 21:29 (in Chinese).
  30. Zhang, J. Y. , Wang, Y. T. , Hu, Q. F. & He, R. M.(2016). Discussion on issues related to sponge city construction. Progress in water science, 27(06), pp. 793-799(in Chinese).
Go to article

Authors and Affiliations

Weijia Liu
1
Qingbao Pei
2
Wenbiao Dong
2
Pengfan Chen
2

  1. East China University of Technology, Nanchang, China
  2. Nanchang Institute of Technology Poyang Lake Basin Water Engineering Safety and Efficient Utilization National and Local Joint Engineering Laboratory, Nanchang, China
Download PDF Download RIS Download Bibtex

Abstract

At present, stormwater management is one of the key issues in urban policy. This is due to the increasing urbanisation, climate change, the growing threat of extreme (weather) events and the need to protect water resources. Legislation plays an essential role in the process of project planning and implementation. The recognition of opportunities and barriers contained in these regulations forms the basis for action by the central government, local authorities and investors. The article aims to analyse legal provisions, administrative decisions and factual circumstances that provide the foundation of administrative court rulings in Poland and regard the legal possibilities of rainwater management in urban areas. The adopted research method allows for/includes the author’s interpretation and formulation of de lege ferenda conclusions. The results of analyses of both European and national legislation and case law indicate that there is a problem with the interpretation of existing legislation and the lack of legal definitions of basic equipment and solutions in the field of water law, for instance. Such legal circumstances make it difficult to make the required legal decisions, and have a negative impact on the timing of implementation and number of these muchneeded projects.
Go to article

Authors and Affiliations

Marcin Sobota
1
ORCID: ORCID
Ewa Burszta-Adamiak
2
ORCID: ORCID
Tomasz Kowalczyk
2
ORCID: ORCID

  1. Wrocław University of Environmental and Life Sciences, Environmental Engineering and Geodesy, Grunwaldzka St. 55, 50-357 Wrocław, Poland
  2. Wrocław University of Environmental and Life Sciences, Environmental Engineering and Geodesy,Grunwaldzka St. 55, 50-357 Wrocław, Poland

This page uses 'cookies'. Learn more