Search results

Filters

  • Journals
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The energy industry is undergoing a major upheaval. In Germany, for example, the large nuclear and coal-fired power plants in the gigawatt scale are planned to be shut down in the forthcoming years. Electricity is to be generated in many small units in a decentralized, renewable and environmentally friendly manner. The large 1000 MW multistage axial steam turbines used to this date are no longer suitable for these tasks. For this reason, the authors examine turbine architectures that are known per se but have fallen into oblivion due to their inferior efficiency and upcoming electric drives about 100 year ago. However, these uncommon turbine concepts could be suitable for small to micro scale distributed power plants using thermodynamic cycles, which use for example geothermal wells or waste heat from industry to generate electricity close to the consumers. Thus, the paper describes and discusses the concept of a velocity-compounded single wheel re-entry cantilever turbine in comparison with other turbine concepts, especially other velocity-compounded turbines like the Curtis-type. Furthermore, the authors describe the design considerations, which led to a specific design of a 5 kW air turbine demonstrator, which was later manufactured and investigated. Finally, first numerical as well as experimental results are presented, compared and critically discussed with regards to the originally defined design approach.

Go to article

Authors and Affiliations

Andreas Paul Weiss
Philipp Streit
Tobias Popp
Patrick Shoemaker
Thomas Hildebrandt
Václav Novotný
Jan Špale
Download PDF Download RIS Download Bibtex

Abstract

The article discusses basic issues related to Polish anthroponomastic terms, their development and frequency, taking into account the variability of terminological units and the co-existence of native and foreign forms (usually Greek or Latin). It presents problems related to defining a term, determining its scope or (in particular cases) status, indicating preferred, permissible or non-recommended variant forms, selection (reduction) of sub-terms, the existence of doublets with a grammatical number, acceptance or rejection of new terms, etc. In the text, among others, the following sources were used: the dictionary “Osnoven sistem i terminologija na slovenskata onomastika” [“Basic system and terminology of Slavic onomastics”] (1983), an article by Mieczysław Karaś “W sprawie polskiej terminologii onomastycznej” [“On Polish onomastic terminology”] (1968), studies by Henryk Górnowicz (1988) and Ewa Jakus-Borkowa (1987), encyclopedia “Polskie nazwy własne” [“Polish proper names”] (1998), the compendium “Słowiańska onomastyka” [“Slavic onomastics”] (2002–2003) and selected articles published in the journal “Onomastica”. The second part of the article presents the history, scope and definitions of the term ethnonym // ethnic name (based on selected compendia, monographs and contributory studies), paying attention to the types of names it covers. In addition, a preliminary structure of an entry in the terminological dictionary has been outlined, including such elements as: the term, its definition, variability // equivalent term, origin // explanation, its English equivalent, examples // usage, context of use, and additional aspects.

Go to article

Authors and Affiliations

Halszka Górny
Download PDF Download RIS Download Bibtex

Abstract

The article presents the criteria taken into account in determining the alignment of regional roads, with particular reference to bypasses of towns located along regional roads. To determine the criteria for the evaluation of variants and their hierarchy, the surveys were conducted using the Delphi method in two rounds, with electronic surveys (the CAWI method). Based on survey studies, an entry list of criteria was set up as a proposal for determining the alignment of regional roads.

Go to article

Authors and Affiliations

P. Żabicki
W. Gardziejczyk
Download PDF Download RIS Download Bibtex

Abstract

Influenced by the dynamic pressure of the front abutment pressure and the lateral abutment pressure, large deformation of surrounding rock occurs advancing working face in the entry heading adjacent to the active longwall mining face. Based on the cause analysis of entry large deformation, a new technology was put forward to solve the problem, and the designing method of drilling hole parameters for directional hydraulic fracturing was formed. Holes are drilled in the entry or in the high drainage entry to a certain rock layer over the adjacent working face, hydraulic cutting or slotting at the bottom of a borehole were also applied in advance to guide the hydraulic fractures extend in expected direction, through which the hard roof above the coal pillar can be cut off directionally. As a result, the stress concentration around the entry was transferred, and the entry was located in a destressing area. The field test at Majialiang coal mine indicates that the propagation length of cracks in single borehole is more than 15 m. After hydraulic fracturing, the large deformation range of the entry is reduced by 45 m, the average floor heave is reduced by 70%, and the average convergence of the entry’s two sides is reduced by 65%. Directional hydraulic fracturing has a better performance to control the large deformation of the dynamic pressure of the entry heading adjacent to the advancing coal face. Besides, it can improve the performance of the safety production.

Go to article

Authors and Affiliations

Bingxiang Huang
Xinglong Zhao
Jian Ma
ORCID: ORCID
Tianyuan Sun
Download PDF Download RIS Download Bibtex

Abstract

The authors discuss the main premises of the project “The most popular surnames in Poland — past and present. E-dictionary” which has been in development since July 2014 in IJP PAN in Krakow. They also present its basic aims and functions, progress already made and they compare it with other dictionaries of surnames. The authors describe several aspects of the dictionary related to IT and computers but also those concerned with onomastics and lexicography. Additionally, they pay particular attention to the information contained in specific parts of each entry.

Go to article

Authors and Affiliations

Katarzyna Skowronek
Barbara Czopek-Kopciuch
Halszka Górny
Małgorzata Magda-Czekaj
Elena Palinciuc-Dudek
Elżbieta Supranowicz
Download PDF Download RIS Download Bibtex

Abstract

Entries in steeply pitching seams have a more complex stress environment than those in flat seams. This study targets techniques for maintaining the surrounding rock mass stability of entries in steep seams through a case study of a steep-seam entry at a mine in southern China. An in-depth study of the deformation and instability mechanisms of the entry is conducted, employing field measurement, physical simulation experiment, numerical simulation, and theoretical analysis. The study results show that the surrounding rock mass of the entry is characterised by asymmetrical stress distribution, deformation, and failure. Specifically, 1) the entry deformation is characterised by a pattern of floor heaving and roof subsidence; 2) broken rock zones in the two entry walls are larger than those in the roof and floor, and the broken rock zone in the seam-floor side wall is larger than that in the seam-roof side wall; 3) rock bolts in the middle-bottom part of the seam-floor side wall of the entry are prone to failure due to tensile stress; and 4) rock bolts in the seam-roof side wall experience relatively even load and relatively small tensile stress. Through analysis, disturbances were found to occur in both temporal and spatial dimensions. Specifically, in the initial mining stage, the asymmetrical rock structure and stress distribution cause entry deformation and instability; during multiple-seam multiple-panel mining operations, a wedge-shaped rock mass and a quasi-arc cut rock stratum formed in the mining space may cause subsidence in the seam-floor side wall of the entry and inter-stratum transpression, deformation, and instability of the entry roof and floor. The principles for controlling the stability of the surrounding rock mass of the entry are proposed. In addition, an improved asymmetrical coupled support structure design for the entry is proposed to demonstrate the effective control of entry deformation.

Go to article

Authors and Affiliations

Panshi Xie
Yongping Wu
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of research on the formation of the WF coefficient in coal excavations. The WF coefficient determines the share of the wet surface of the excavation sidewall. The wet part of the excavation sidewall is covered partly by the water film, which evaporates, lowering the temperature of this surface. This coefficient is one of the principal parameters used in forecasting the changes in temperature and humidity of the mine air occurring on the way of contact between the excavation sidewall and the flowing air. During the determination of the coefficient value, the criterion of equality of the actual and forecasted ratios of sensible heat to total heat was assumed in the research methodology. Values of the WF coefficient in the examined excavations generally vary within the range of 0,1-0,6, and they are mostly dependent on the parameters related to the period of ventilation.
Go to article

Authors and Affiliations

Marcin Smołka
1
ORCID: ORCID

  1. Central Mining Institute, Plac Gwarków 1, 40-166 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Cumulative blasts are an important controlled blasting method used to control the propagation of cracks in the predetermined direction. However, traditional cumulative blasts are associated with long processing times and poor blasting effects. A simple blasting technology called bilateral cumulative tensile explosion (BCTE) is proposed in this paper. There are two application types where BCTE is used. The first application is used to control the stability of high-stress roadways in both Wangzhuang mine 6208 tailgate and Hongqinghe mine 3-1103 tailgate. The second application is used to replace the backfill body in gob-side entry retaining (GER) in Chengjiao mine 21404 panel, Jinfeng mine 011810 panel and Zhongxing mine 1200 panel. The first application type reveals that BCTE can significantly reduce the deformation of the surrounding rock and reduce the associated maintenance cost of the roadways. Whereas the second application type, the roadway deformations are smaller, the process is simpler, and the production costs are lower, which further promotes GER and is of significance towards conserving resources.
Go to article

Bibliography

[1] M. Hood, Cutting strong rock with a drag bit assisted by high-pressure water jets. JS. Afr. Inst. Min. Metall. 77 (4), 79-90 (1976). DOI: https://journals.co.za/doi/abs/10.10520/AJA0038223X_715
[2] J.G. Kim, J.J. Song, Abrasive water jet cutting methods for reducing blast-induced ground vibration in tunnel excavation. Int. J. Rock Mech. Sci. 75, 147-158 (2015). DOI: https://doi.org/10.1016/j.ijrmms.2014.12.011
[3] B.X. Huang, Y.Z. Wang, Roof weakening of hydraulic fracturing for control of hanging roof in the face end of high gassy coal longwall mining: a case study. Arch. Min. Sci. 61 (3), 601-615 (2016). DOI: https://doi.org/10.1515/amsc-2016-0043
[4] J. Kabiesz, A. Lurka, J. Drzewiecki, Selected methods of rock structure disintegration to control mining hazards. Arch. Min. Sci. 60 (3), 807-824 (2015). DOI: https://doi.org/10.1515/amsc-2015-0053
[5] S.S. Rathore, S. Bhandari, S.S, Rathore, S. Bhandari, Controlled fracture growth by blasting while protecting damages to remaining rock. Rock. Mech. Rock. Eng. 40 (3), 317-326 (2017). DOI: https://doi.org/10.1007/s00603-005-0080-5
[6] S.H. Cho, Y. Nakamura, B. Mohanty, Numerical study of fracture plane control in laboratory-scale blasting. Eng. Fract. Mech. 75 (13), 3966-3984 (2008). DOI: https://doi.org/10.1016/j.engfracmech.2008.02.007
[7] K. Katsuyama, H. Kiyokawa, K. Sassa. Control the growth of cracks from a borehole by a new method of smooth blasting. Mining Safety 29, 16-23 (1983).
[8] C.L.N. Foster, A Treatise on Ore and Stone Mining, Charles Griffin amp (1905).
[9] U . Langefors, B. Kihlström, The modern technique of rock blasting, Wiley (1978).
[10] W. Fourney, J. Dally, D. Holloway, Controlled blasting with ligamented charge holders, Int. J. Rock Mech. Min. 15 (3), 121-129 (1978). DOI: https://doi.org/10.1016/0148-9062(78)90006-2
[11] L. Costin, Static and dynamic fracture behavior of oil shale, in: West Conshohocken, America, S. Freiman and E. Fuller (Eds.), ASTM International (1981).
[12] G . Bjarnholt, R. Holmberg, F. Ouchterlony, A linear shaped charge system for contour blasting, in: Dallas, Australia, Koiiya C.C. (Eds.), Proceeding of 9th conference on explosives and blasting technique Dallas (1983).
[13] D . Guo, H. Pei, J. Song, F. Qin, X. Liu, Study on spliting mechanism of coal bed deep-hole cumulative blasting to improve permeability. J. China Coal Soc. 33 (12), 1381-1385 (2008). DOI: https://doi.org/10.13225/j.cnki.jccs.2008.12.025
[14] S. Wang, Y. Wei, Fracture Control in Rock Blasting. Int. J. Min. Sci. Technol. 14 (3), 113-120 (1985).
[15] W.L. Fourney, D.B. Barker, D.C. Holloway, Model Studies of Explosive Well Stimulation Techniques. Int. J. Rock. Mech. Min. Sci. 18, 113-127 (1981). DOI: https://doi.org/10.1016/0148-9062(81)90737-3
[16] M. He, W. Cao, R.L. Shan, S. Wang, New blasting technology-bilateral cumulative tensile explosion. Chin. J. Rock Mech. Eng. 22 (12), 2047-2051 (2003).
[17] Z. Zhijie, W. Yunlong, H. Jun, Y. Chen, Overburden failure and ground pressure behaviour of longwall top coal caving in hard multi-layered roof. Arch. Min. Sci. 64 (3), 575-590 (2019). DOI: https://doi.org/10.24425/ams.2019.129370
[18] M. He, W. Cao, S. Wang, Bilateral cumulative tensile blasting and its application in shaping blasting of caverns. J. Saf. Environ. 4 (1), 8-10 (2004).
[19] M. He, C. Wang, X. Li, Study on controlled shaping blasting technology for jointed rock mass. Rock. Soil. Mech. 25 (11), 1749-1753 (2004) . DOI: https://doi.org/10.16285/j.rsm.2004.11.015
[20] C. Yan, S. Wang, M. Ren, H. Cheng, L. Chun, Application of Blast of Pulling Stress and Gather Energy Model to the Defence Project. Expl. Eng. z1, 304-305 (2003). DOI: https://doi.org/10.3969/j.issn.1672-7428.2003.z1.104
[21] Z. Zhang, On the initiating, glowing branching and sloping of crack in rock blasting. Blasting. 16 (4), 21-24 (1999).
[22] S.V. Klishin, S.V. Lavrikov, A.F. Revuzhenko, Numerical Simulation of Abutment Pressure Redistribution during Face Advance, AIP Conference Proceedings (2017).
[23] N . Hosseini, K. Oraee, Studying the stress redistribution around the longwall mining panel using passive seismic velocity tomography and geostatistical estimation. Arab. J. Geosci. 6 (5) 1407-1416 (2013). DOI: https://doi.org/10.1007/s12517-011-0443-z.
[24] Z.H. Ouyang, Mechanism and experiment of hydraulic fracturing in rock burst prevention. CRC Press-Taylor & Francis Group (2013).
[25] A. Royanfar, K. Shahriar, Investigation of factors affecting floor heave and convergence of galleries in Tabas coal mine. Uceat-Chamber Mining Engineers Turnkey, (2007).
[26] X. Zhang, R.Y.S. Pak, Y. Gao, Field experiment on directional roof presplitting for pressure relief of retained roadways. Int. J. Rock Mech. Sci. 134, 104436 (2020). DOI: https://doi.org/10.1016/j.ijrmms.2020.104436
[27] M. He, Z. Song, A. Wang, Theory of longwall mining by using roof cuting shortwall team and 110 method – the third mining science and technology reform. Coal. Sci. Technol. Mag. 1, 1-9+13 (2017). DOI: https://doi.org/10.19896/j.cnki.mtkj.2017.01.002
[28] J. Yang, B. Liu, Y. Gao, Y. Wang, Y. Cheng, S. Hou, Dynamic Load Characteristics and the Pressure Reduction Caused by the Cutting Seam on the Roadside Roof of a Large Mining Height Longwall Face in a Shallow Coal Seam. Geotech. Geol. Eng. 37 (4), 2949-2962 (2019). DOI: https://doi.org/10.1007/s10706-019-00811-6
[29] Q. Wang, M. He, J. Yang, H. Gao, B. Jiang, H. Yu, Study of a no-pillar mining technique with automatically formed gob-side entry retaining for longwall mining in coal mines. Int. J. Rock. Mech. Min. Sci. 110, 1-8 (2018). DOI: https://doi.org/10.1016 /j.ijrmms.2018.07.005.
[30] J. Yang, M. He, C. Cao, Design principles and key technologies of gob side entry retaining by roof pre-fracturing. Tunn. Undergr. Sp. Tech. 90, 309-318 (2019). DOI: https://doi.org/10.1016/j.tust.2019.05.013
[31] L. Dong, Application of Roof Cutting and Pressure Relief Technology in 6212 Face of Wangzhuang Coal Mine. Coal. 28 (9), 54-55+83 (2019). DOI: https://doi.org/10.3969/j.issn.1005-2798.2019.09.021
[32] Y. Gao, J. Yang, X. Zhang, H. Xue, M. He, Study on roadway surroundings control using roof cutting and pressure release technology by directional tensile blasting in deep coal mines. Chin. J. Rock Mech. Eng. 38 (10), 2045-2056 (2019). DOI: https://doi.org/10.13722/j.cnki.jrme.2019.0465
[33] S. Cheng, PhD thesis, Study on Stability Mechanism of Surrounding Rock and its Control for Gob-side Entry Retaining by Cutting Roof to Release Pressure in Deep Working Face of Chengjiao coal mine. China University of Mining and Technology (Beijing), Beijing,China, (2017).
[34] Q. Han, PhD thesis, Study on Stability Control Mechanism of the Formed Lane through Roof Cutting in “Three Soft” Working Face in Zhongxing Mine. China University of Mining and Technology (Beijing), Beijing, China, (2017).
[35] X. Sun, Q. Han, J. Wang, Study on Technology Application of Gob-side Entry Retaining in Zhongxing Mine 1200 Working Face. Coal. Technol. 36 (2), 28-30 (2017). DOI: https://doi.org/10.13301/j.cnki.ct.2017.02.011
[36] Z. Wen, Practice of Non Pillar Mining in Large and Medium Thick Coal Seam in Yongcheng Mining Area. Chin. J. under. S. Eng. 15 (S1), 256-259 (2019).
[37] X. Sun, G. Li, P. Song, C. Miao, C. Zhao, Application research on gob-side entry retaining methods in No. 1200 working face in Zhongxing mine. Geotech. Geol. Eng. 37 (1), 185-200 (2019). DOI: https://doi.org/10.1007/s10706-018-0602-z
[38] E. Zhen, Y. Gao, Y. Wang, S. Wang, Comparative study on two types of nonpillar mining techniques by roof cutting and by filling artificial materials. Adv. Civ. Eng. 2019, 5267240 (2019). DOI: https://doi.org/10.1155/2019/5267240
Go to article

Authors and Affiliations

Jun Yang
1
ORCID: ORCID
Binhui Liu
1
ORCID: ORCID
Wenhui Bian
1
ORCID: ORCID
Kuikui Chen
1
ORCID: ORCID
Hongyu Wang
1
ORCID: ORCID
Chen Cao
2
ORCID: ORCID

  1. China University of Mining and Technology, State Key Laboratory for Geomechanics and Deep Underground Engineering, Beijing 100083, China
  2. University of Wollongong, Mining & Environment Engineering, School of Civil, Wollongong, NSW 2522, Australia
Download PDF Download RIS Download Bibtex

Abstract

There are many problems associated with the surrounding rocks of the gob-side entry retaining by roof cutting (GERRC) as they are difficult to stabilise in deep mines. The following needs to be studied to understand the problems such as the pressure relief mechanism, evolution law of the surrounding-rock stress and the key technologies of GERRC in deep mines. Cracks are formed by advanced directional blasting to sever the path of stress transmission from the roof of the goaf to the roof of the entry and reduce the lateral cantilever length of the roof. Therefore the surrounding-rock stress and roof structure are optimised. The broken and expanded gangue formed by the collapse of the strata in the range of roof cutting fills the mining space adequately, which avoids a rapid pressure increase caused by the roof breaking impact and slows down the movement of overlying strata. The deformation of the deep surrounding rocks is transformed from “abrupt” to “slow”, and the surrounding-rock deformation of the retained entry in deep mines is significantly reduced. The average pressure and periodic pressure of the supports near the blasting line can be reduced by the blasting cracks to a certain extent, mainly due to the reduction of the length of the immediate roof cantilever and the effective load of the main roof. The combined support technologies for GERRC in deep mines were proposed, and field tests were performed. The monitoring results show that the coordinated control system can effectively control the deformation of deep rock masses, and all indexes can meet the requirements of the next working face after the retained entry is stabilised.
Go to article

Authors and Affiliations

Shangyuan Chen
1
ORCID: ORCID
Qian Lv
1
ORCID: ORCID
Yue Yuan
2
ORCID: ORCID

  1. School of Civil and Architectural Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
  2. Work Safety Key Lab on Prevention and Control of Gas and Roof Disasters for Southern Coal Mines, Hunan University of Science and Technology, Xiangtan Hunan 411201, China

This page uses 'cookies'. Learn more