Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

With the increasing penetration rate of grid-connected renewable energy generation, the problem of grid voltage excursion becomes an important issue that needs to be solved urgently. As a new type of voltage regulation control method, electric spring (ES) can alleviate the fluctuations of renewable energy output effectively. In this paper, the background and basic principle of the electric spring are introduced firstly. Then, considering the influence of an electric spring on noncritical load voltage, noncritical loads are classified reasonably, and based on the electric spring phasor diagram, the control method to meet the noncritical load voltage constraint is proposed. This control method can meet the requirements of voltage excursions of different kinds of noncritical load, increase the connection capacity of the noncritical load and improve the voltage stabilization capacity of the electric spring. Finally, through the simulation case, the feasibility and validity of electric spring theory and the proposed control method are verified.

Go to article

Authors and Affiliations

Yixi Chen
Gang Ma
Uchao Xu
Hang Zhang
Rong Ju
Download PDF Download RIS Download Bibtex

Abstract

The presented paper concerns the issues of communication networks applied to monitoring and control of reactive power compensator for small hydroelectric plants installed in areas distant from urban agglomerations. Ethernet, CAN, Modbus and GPRS transmission protocols has been used. Industrial programmable controller as a data collector has been used also.

Go to article

Authors and Affiliations

Remigiusz Olesiński
Paweł Hańczur
Janusz Wiśniewski
Włodzimierz Koczara
Download PDF Download RIS Download Bibtex

Abstract

Grid-connected inverters are commonly used in systems of renewable energy to convert this energy source into AC power with parameters suitable for connection to the grid. In the normal operating conditions, the grid-connected inverters mainly generate active power to the grid. However, when a voltage sag or voltage imbalance occurs, the grid voltage imbalance in the conventional control methods causes negative sequence components and increases the output current magnitude of inverters. The increase of current can damage power semiconductor devices. This paper presents a strategy to limit the current magnitude of inverters under unbalanced grid voltage conditions. In this strategy, a multiple-complex-coefficient filter is used to eliminate the negative sequence voltage components. This method does not require any additional hardware. A three-phase gridconnected photovoltaic inverter system using a solar array of 20 kWp is also used for the survey. The effectiveness has been validated when comparing the simulation results on Matlab/Simulink of the proposed method with those of the conventional method.
Go to article

Authors and Affiliations

Tho Quang Tran
1
ORCID: ORCID

  1. Hochiminh City University of Technology and Education, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

More and more street lighting deployments use LED technology as a light source. Unfortunately, the new technology also brings some challenges with it that remain unnoticed until installed at scale. This article presents issues related to capacitive reactive power consumed by LED luminaires. The problem is even more profound if the luminaire is dimmed, because it consumes capacitive reactive power, which is very undesirable in the power system. Countermeasures in terms of reactive power compensation for a luminaire working with variable power and their effects are also presented. The article also contains the results of the harmonic analysis of the LED luminaires current for full power and dimmed operation.
Go to article

Bibliography

[1] M. Traverso, S. Donatello, H. Moons, R. Rodriguez Quintero, M. Gama Caldas, O. Wolf, P. Van Tichelen, V. Van Hoof and T. Geerken, “Revision of the EU green public procurement criteria for street lighting and traffic signals - preliminary report,” EU - scientific and technical research reports June 2017. DOI: 10.2760/479108.
[2] A. Manolescu and F. Sisak, “LED source, a comparative analysis on lighting efficiency,” 2016 International Conference and Exposition on Electrical and Power Engineering (EPE), Iasi, 2016, pp. 525-528, DOI: 10.1109/ICEPE.2016.7781395.
[3] D. Jenkins and A. Bhargava, “LED Lighting: Maximizing the Reliability, Safety, and Efficiency of Light Fixtures in Hazardous Environments,” in IEEE Industry Applications Magazine, vol. 21, no. 1, pp. 64-67, Jan.-Feb. 2015, DOI: 10.1109/MIAS.2014.2345829.
[4] L.T. Doulos, A. Tsangrassoulis, P.A. Kontaxis, A. Kontadakis and F.V. Topalis, “Harvesting daylight with LED or T5 fluorescent lamps? The role of dimming,” Energy and Buildings, vol. 140. pp. 336-347, April 2017 DOI: 10.1016/j.enbuild.2017.02.013.
[5] G. Gagliardi, M. Lupia, G. Cario, F. Tedesco, F. Cicchello Gaccio, F. Lo Scudo and A. Casavola, “Advanced Adaptive Street Lighting Systems for Smart Cities,” Smart Cities 2020, vol. 3, pp. 1495-1512, November 2020, DOI: 10.3390/smartcities3040071.
[6] B.A. Portnov, R. Saad and T. Trop, “Interactive Scenario-Based Assessment Approach of Urban Street Lighting and Its Application to Estimating Energy Saving Benefits,” Energies 14, no. 2: 378. DOI: 10.3390/en14020378.
[7] Ł. Kosicki and D. Typańska, “Badanie odkształceń prądów i napięć generowanych przez oprawy z diodami LED,” Poznan university of technology academic journals, Electrical Engineering 2017, 92, 215-226.
[8] A. Djuretic, V. Skerovic, N. Arsic and M. Kostic, “Luminous flux to input power ratio, power factor and harmonics when dimming high-pressure sodium and LED luminaires used in road lighting,” Lighting Research & Technology, 2019. 51(2), 304–323. DOI: 10.1177/1477153518777272.
[9] A. Djuretic and M. Kostic, “Actual energy savings when replacing high-pressure sodium with LED luminaires in street lighting,” Energy 2018, vol. 157, pp. 367–378. DOI: 10.1016/j.energy.2018.05.179
[10] T. Lerch, M. Rad and I. Wojnicki, "Selected power quality issues of LED street lighting," 2020 12th International Conference and Exhibition on Electrical Power Quality and Utilisation- (EPQU), Cracow, Poland, 2020, pp. 1-4, DOI: 10.1109/EPQU50182.2020.9220310.
[11] F. A. Karim, M. Ramdhani and E. Kurniawan, "Low pass filter installation for reducing harmonic current emissions from LED lamps based on EMC standard," 2016 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC), Bandung, 2016, pp. 132-135, DOI: 10.1109/ICCEREC.2016.7814966.
[12] L. S. Czarnecki, "Considerations on the Reactive Power in Nonsinusoidal Situations," in IEEE Transactions on Instrumentation and Measurement, vol. IM-34, no. 3, pp. 399-404, Sept. 1985, DOI: 10.1109/TIM.1985.4315358.
[13] D. Vieira, R. A. Shayani and M. A. G. de Oliveira, "Reactive Power Billing Under Nonsinusoidal Conditions for Low-Voltage Systems," in IEEE Transactions on Instrumentation and Measurement, vol. 66, no. 8, pp. 2004-2011, Aug. 2017, DOI: 10.1109/TIM.2017.2673058.
[14] C.I. Budeanu, “Puissances reactives et fictives,” Instytut Romain de l'Energie, Bucharest, Romania. 1927.
[15] D. Jeltsema, "Budeanu's concept of reactive and distortion power revisited," 2015 International School on Nonsinusoidal Currents and Compensation (ISNCC), Lagow, 2015, pp. 1-6, DOI: 10.1109/ISNCC.2015.7174697.
[16] IEC 61000-3-2 – “Electromagnetic compatibility (EMC) – Part 3-2: Limits – Limits for harmonic current emissions (equipment input current ≤ 16 A per phase),” 2019
[17] R. Nawrowski, Z. Stein and M. Zielińska, “Analiza wpływu przekraczania dopuszczalnych wartości współczynnika mocy w sieci nn na pracę systemu elektroenergetycznego,” Poznan University of Technology Academic Journals, Electrical Engineering 2013, 74, 111-117.
[18] IEEE 519-1992 - IEEE “Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems,” 1993.
[19] S. Ernst, L. Kotulski, T. Lerch, M. Rad, A. Sȩdziwy and I. Wojnicki “Calculating Reactive Power Compensation for Large-Scale Street Lighting”, Computational Science – ICCS 2020. Amsterdam, June 2020, vol 12138. DOI: 10.1007/978-3-030-50417-5_40.
Go to article

Authors and Affiliations

Tomasz Lerch
1
ORCID: ORCID
Michał Rad
1
ORCID: ORCID
Igor Wojnicki
1

  1. AGH University of Science and Technology, Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a concept of a control system for a high-frequency three-phase PWM grid-tied converter (3x400 V / 50 Hz) that performs functions of a 10-kW DC power supply with voltage range of 600÷800 V and of a reactive power compensator. Simulation tests (in PLECS) allowed proper selection of semiconductor switches between fast IGBTs and silicon carbide MOSFETs. As the main criterion minimum amount of power losses in semiconductor devices was adopted. Switching frequency of at least 40 kHz was used with the aim of minimizing size of passive filters (chokes, capacitors) both on the AC side and on the DC side. Simulation results have been confirmed in experimental studies of the PWM converter, the power factor of which (inductive and capacitive) could be regulated in range from 0.7 to 1.0 with THDi of line currents below 5% and energy efficiency of approximately 98.5%. The control system was implemented in Texas Instruments TMS320F28377S microcontroller.

Go to article

Authors and Affiliations

Roman Barlik
Piotr Grzejszczak
Bernard Leszczyński
Marek Szymczak

This page uses 'cookies'. Learn more