Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The impact of changes in regional development along with the construction of Yogyakarta International Airport in Kulon Progo Regency may affect land use changes as the activities of the surrounding population. Galur– Lendah area, which is located near the city of Yogyakarta and acts as the entrance to Kulon Progo, will also develop. Along with these developments, the determination of the groundwater recharge–discharge area is needed to ensure the availability of groundwater at this site. The purpose of this study was to determine the zonation of groundwater recharge–discharge areas to support the availability of groundwater. The method of research is a spatial analysis using a geographic information system (GIS) based on ratings and weighting values for six parameters, including slope, rainfall, groundwater table depth, soil type, rock permeability, and land use. The field hydrogeological was also conducted to find out rock permeability and groundwater quality (pH, EC, TDS). The results showed that areas with potential for groundwater recharge were in the central and northeastern parts of the study area and the discharge zones in the north and south were with potential infiltration values of 26–43 and 44–59, respectively. However, the recharge area can still function as a discharge zone.
Go to article

Authors and Affiliations

T. Listyani R.A.
1
ORCID: ORCID
Ignatius A. Prabowo
1
ORCID: ORCID
Wayan Suparta
1
ORCID: ORCID

  1. Institut Teknologi Nasional Yogyakarta (ITNY), Caturtunggal, Depok, Sleman, 55281, Yogyakarta, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Building a Strategic Battery Value Chain in Europe COM/2019/176 is a priority for EU policy. Europe’s current share of global cell production is only 3%, while Asia has already reached 85%. To ensure a competitive position and independence in the battery market, Europe must act quickly and comprehensively in the field of innovation, research and construction of the infrastructure needed for large-scale battery production. The recycling of used batteries can have a significant role in ensuring EU access to raw materials. In the coming years, a very rapid development of the battery and rechargable battery market is forecast throughout the EU. In the above context, the recycling of used batteries plays an important role not only because of their harmful content and environmental impact, or adverse impact on human health and life, but also the ability to recover many valuable secondary raw materials and combine them in the battery life cycle (Horizon 2010 Work Programme 2018–2020 (European Commission Decision C(2019) 4575 of 2 July 2019)). In Poland, more than 80% of used batteries are disposable batteries, which, together with municipal waste, end up in a landfill and pose a significant threat to the environment. This paper examines scenarios and directions for development of the battery recycling market in Poland based on the analysis of sources of financing, innovations as well as economic and legal changes across the EU and Poland concerning recycling of different types of batteries and rechargable batteries.

Go to article

Authors and Affiliations

Agnieszka Nowaczek
ORCID: ORCID
Joanna Kulczycka
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

BacBinh is a sand dune area located in the southern part of central Vietnam. This area is confronted with a lack of water supply. The project aims to investigate the site for artificial recharge (AR) and the management of aquifer recharge (MAR) in the sand dune area. The geological setting of the area is characterised by ryo-dacitic bedrock, which forms steep isolated hills (up to 300 m a.s.l.) overlain by a Pleistocene-Holocene marine sand dunes plateau (up to 200 m a. s. l.). This is represented by prevailing white fine sand (Pleistocene) and prevailing red sand (Holocene), which occurs extensively in the coastal area. The hydrological and geological conditions are investigated by collecting all existing data of aerial and satellite photos, rainfall statistics, morphological/geological/ and hydrogeological maps for acquisition and interpretation. The field geophysical surveys are carried out for the location of groundwater aquifers to site selection, monitoring and operation of groundwater recharge. Hydrochemical and isotopic characterisation of surface water and groundwater in different periods showed that the sand dunes aquifers, with electrical conductivity ranging from 100 to 400 μS/cm, are composed of different water types, characterised by complex mixing processes. The site chosen for the artificial recharge, where 162 days of pumping tests have been carried out, proved that the use of the bank filtration technique has considerably improved the quality of water, which was originally highly contaminated by E-coli bacteria. The well field developed within the present project is now capable of supplying 220 m3/day of good water quality to the HongPhong community, BacBinh district, which were recurrently affected by severe droughts.
Go to article

Bibliography

[1] P. Bono, R. Gonfiantini, M. Alessio, C. Fiori, L. D’Amelio, Stable isotope (δ18O, δ2H) and Tritium in precipitation: Results and comparison with groundwater perched aquifers in Central Italy. TEC-DOC (IAEA) (2004).
[2] P.J. Dillon, M. Miller, H. Fallowfield, J. Hutson, The potential of riverbank filtration for drinking water supplies in relation to microsystem removal in brackish aquifers. J. Hydrol. 266 (3-4), 209-221 (2002).
[3] P.J. Dillon (Ed.), Management of Aquifer Recharge for Sustainability, A.A. Balkema Publishers, Australia, (2002).
[4] P.J. Dillon, Future Management of Aquifer Recharge, UNESCO-VIETNAM Workshop on Augmenting groundwater resources by Artificial Recharge in South East Asia, HCM city, Dec. 15-17-2004 (2005).
[5] P.J. Dillon, S. Toze, D. Page, J. Vanderzalm, E. Bekele, J. Sidhu, S. Rinck-Pfeiffer, Managed aquifer recharge: rediscovering nature as a leading edge technology. Water Sci. Technol. 62 (10), 2338-2345 (2010). DOI: https://doi.org/10.2166/wst.2010.444
[6] I . Gale, I. Neumann, R. Calow, M. Moench, The effectiveness of Artificial Recharge of Groundwater: a review. Phase 1 Final report R/02/108N, British Geological Survey, (2002).
[7] I . Gale, D.M.J. Macdonald, I. Neumann, R. Calow, Augmenting Groundwater Resources by Artificial Recharge. AGRAR, Phase 2 Inception report, British Geological Survey, (2003).
[8] N.V. Giang, M. Bano, T.D. Nam, Groundwater investigation on sand dunes area in southern part of Vietnam by Magnetic Resonance Sounding. Acta Geophysica 60 (1), 157-172 (2012). DOI: https://doi.org/10.2478/s11600-010-0040-2
[9] N.V. Giang, The role of geophysical techniques for hydrogeological and environmental study in the sand-dunes area in Vietnam. Poster presentation at the IUGG XXIV General Assembly 2-13 July, Perugia, Italy (2007).
[10] N.V. Giang, N. Hida, Study of Hydrological Characteristics and Hydrogeological Conditions for Management of Aquifer Recharge in NW Hanoi Vietnam. Proc. of International Symposium on Efficient Groundwater resources Management, Feb.16-21, Bangkok, Thailand (2009).
[11] N.V. Giang, N.B. Duan, L.C. Khiem, L.N. Thanh, N.Q. Dung, The interpretation of geophysical data for studying hydrogeological characteristics of BacBinh, BinhThuan area. Vietnam J. Earth Sci. 68B (4), 410-422, (2016), (in Vietnamese-Abstract in English).
[12] N.V. Giang, N.B. Duan, L.N. Thanh, N. Hida, Geophysical techniques to aquifer locating and monitoring for industrial zones in North Hanoi, Vietnam. Acta Geophysica 61 (6), 1573-1597 (2013). DOI: https://doi.org/10.2478/s11600-013-0147-8.
[13] N.V. Giang, L.N. Thanh, V.Q. Hiep, N. Hida, Hydrological and hydrogeological characterization of groundwater and river water in the North Hanoi industrial area, Vietnam. Environmental Earth Sciences 71 (11), 4915-4924 (2014). DOI: https://doi.org/10.1007/s12665-014.3086-z.
[14] N.V. Giang, L.B. Luu, T.D. Nam, Determination of water bearing layers on dry sand dune of the Bac Binh-Binh Thuan area by electromagnetic data. Vietnam J. Earth Sci. 30 (4), 472-480 (2008), (in Vietnamese-Abstract in English).
[15] N. Hida, N.V. Giang, Artificial recharge of groundwater in the Rokugo alluvial fan: Experiment of April and September. Proceedings of Japanese Association of Hydrological Sciences (JAHS-21) at Matsumoto, Japan, Oct. 28-29, (2006).
[16] N. Hida, N.V. Giang, M. Kagabu, Experience of Managed Aquifer Recharge Using Basin Method in the Rokugo Alluvial Fan, Northern Japan. Proc. of International Symposium on Efficient Groundwater resources Management, Feb. 16-21, Bangkok, Thailand (2009).
Go to article

Authors and Affiliations

Nguyen Van Giang
1
ORCID: ORCID

  1. BinhDuong University, Faculty of Architecture and Construction, 504 Binhduong Ave., Thu-Dau Mot city, BinhDuong province
Download PDF Download RIS Download Bibtex

Abstract

MIKE SHE software was used to estimate recharge into the aquifers of Ogun and Oshun Basins. Abeokuta within the Ogun Basin and Oshogbo in the Oshun Basin are subdivided vertically into two components: atmosphere, and unsaturated zone. The atmosphere zone comprises of rainfall and potential evapotranspiration, while the unsaturated zones, comprises of the Basement Complex and Sedimentary rock. Daily records from two rainfall stations, Oshogbo station (2008–2011) and Abeokuta station (2010–2014) water years were obtained for simulation of groundwater recharge processes using MIKE SHE model. The simulation results showed that daily groundwater recharge is influenced by rainfall and ranges from 0 mm∙day–1 in January when there was an insufficient rainfall in the two stations to 10.89 mm∙day–1 in Abeokuta and 29.85 mm∙day–1 in Oshogbo in the month of August when the soils had attained field capacity. The study found out that there are more daily groundwater recharge in Oshun basin compared to that of Ogun basin. This was alluded to more rain-fall and less evapotranspiration recorded at Oshun basin as compared to Ogun basin coupled with the sedimentary soil which allows more movement of water into the aquifer of the basin. It is recommended MIKE SHE model should be used to estimate recharge in other basins in Nigeria and Africa for quick and effective daily recharge calculations to permit better and scientific decision making in these areas.

Go to article

Authors and Affiliations

Muritala O. Oke
Download PDF Download RIS Download Bibtex

Abstract

This article introduces a groundwater vulnerability assessment model that utilises the fuzzy analytic hierarchy process (FAHP) in the Wadi AlHasa catchment, Jordan. The assessment takes into account both geomorphological and hydrogeological variables, employing a comprehensive methodology that integrates various parameters. To evaluate the catchment, the study employs remote sensing and Geographic Information System (GIS) techniques. The analysis of the digital elevation model enables the creation of a map illustrating the diverse geomorphology of the catchment. This geomorphology significantly influences drainage density, direction, and the spatial distribution and intensity of flash flood events. Moreover, the study develops and maps a fuzzy FAHP DRASTIC vulnerability index, which proves to be a valuable tool for assessing the susceptibility of groundwater resources to contamination. The unique feature of the index is its ability to incorporate uncertain or subjective data, providing a means to evaluate the significance of various influencing factors. This information serves as critical support for decision-making and management efforts geared towards safeguarding and enhancing groundwater resources. Within the study area, the DRASTIC vulnerability index values span from 0.08325 to 0.28409, with 18% of the site exhibiting a high vulnerability rate. Additionally, the article implements a managed aquifer recharge model (MAR), with 31% of the area falling into MAR classes. Among these, 22.1% are classified as a high MAR class, while 0.7% belong to a very high MAR class. These findings underscore the feasibility of MAR projects in regions with limited water resources.
Go to article

Authors and Affiliations

Alsharifa Hind Mohammad
1
ORCID: ORCID
Taleb Odeh
2
ORCID: ORCID
Mahmoud Abualhaijaa
1
ORCID: ORCID
Khaldoun Shatanawi
1 3
ORCID: ORCID
Maha Halalshe
1
ORCID: ORCID

  1. The University of Jordan, Water, Energy, and Environment Center, Queen Rania Street, 11942 Amman, Jordan
  2. The Hashemite University, Department of Water Management and Environment, Prince Al Hassan bin Talal College for Natural Resources and the Environment, P.O. Box 330127, 13133 Zarqa, Jordan
  3. The University of Jordan, School of Engineering, Queen Rania Street, 11942 Amman, Jordan
Download PDF Download RIS Download Bibtex

Abstract

The paper characterises the method of estimating the size of the areas supplying radon to radon groundwater intakes. It is presented on the example of the intakes of radon groundwaters and radon acidulous waters of Lądek Zdrój, Świeradów Zdrój and Kowary. The results of appropriate calculations prove that the volume of rocks supplying radon to the groundwaters of particular intakes oscillates from over ten to several hundred thousand cubic metres. Considering the depth of the zone where radon saturation of these waters takes place, the area supplying this gas to particular intakes varies from several hundred to several thousand square metres. The largest areas of radon-222 supply are characteristic of the most discharge springs, while the smallest ones belong to the springs of low discharge, especially the intakes of groundwater mixture, where only one component supplies large quantities of radon-222. The recharge areas of groundwaters in which
Go to article

Authors and Affiliations

Tadeusz Andrzej Przylibski

This page uses 'cookies'. Learn more