Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 10
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Kvitka‑Osnovyanenko was the first prose writer of the new Ukrainian literature, the conventional starting point for which is dated as 1798, when Ivan Kotlyarevsky’s Aeneid was published. In 1833‑1834, Hryhoriy Kvitka‑Osnovyanenko began to publish his stories and short novels in Ukrainian. They served as a starting point for all subsequent prose in the Ukrainian language. A structural analysis of Kvitka’s prose has shown that his method of text construction still had much in common with folk tales: texts are constructed on the basis of elemental repetitions or binary oppositions. However, the author has already started to make important semantic shifts, introducing types of characters and collisions alien to folklore text per se. Thus the effect of deautomatization of the folklore perception is reached. The meaning of some texts, which were previously considered “humorous”, in the light of what has been said, acquires a meta‑narrative meaning: A Soldier’s Portrait and The Konotop Witch, have episodes that expose their main compositional technique (‘priyom’) and demonstrate the author’s conscious play with the narrative patterns of folklore.
Go to article

Authors and Affiliations

Nazarii Nazarov
1
ORCID: ORCID

  1. Taras Shevchenko National University of Kyiv
Download PDF Download RIS Download Bibtex

Abstract

The known standard recursion methods of computing the full normalized associated Legendre functions do not give the necessary precision due to application of IEEE754-2008 standard, that creates a problems of underflow and overflow. The analysis of the problems of the calculation of the Legendre functions shows that the problem underflow is not dangerous by itself. The main problem that generates the gross errors in its calculations is the problem named the effect of “absolute zero”. Once appeared in a forward column recursion, “absolute zero” converts to zero all values which are multiplied by it, regardless of whether a zero result of multiplication is real or not. Three methods of calculating of the Legendre functions, that removed the effect of “absolute zero” from the calculations are discussed here. These methods are also of interest because they almost have no limit for the maximum degree of Legendre functions. It is shown that the numerical accuracy of these three methods is the same. But, the CPU calculation time of the Legendre functions with Fukushima method is minimal. Therefore, the Fukushima method is the best. Its main advantage is computational speed which is an important factor in calculation of such large amount of the Legendre functions as 2 401 336 for EGM2008
Go to article

Authors and Affiliations

Elena Novikova
Alexander Dmitrenko
Download PDF Download RIS Download Bibtex

Abstract

We consider the downlink of an orthogonal frequency division multiplexing (OFDM) based cell that accommodates calls from different service-classes with different resource requirements. We assume that calls arrive in the cell according to a quasi-random process, i.e., calls are generated by a finite number of sources. To calculate the most important performance metrics in this OFDM-based cell, i.e., congestion probabilities and resource utilization, we model it as a multirate loss model, show that the steady-state probabilities have a product form solution (PFS) and propose recursive formulas which reduce the complexity of the calculations. In addition, we study the bandwidth reservation (BR) policy which can be used in order to reserve subcarriers in favor of calls with high subcarrier requirements. The existence of the BR policy destroys the PFS of the steady-state probabilities. However, it is shown that there are recursive formulas for the determination of the various performance measures. The accuracy of the proposed formulas is verified via simulation and found to be satisfactory.

Go to article

Authors and Affiliations

P. Panagoulias
I. Moscholios
P. Sarigiannidis
M. Piechowiak
M. Logothetis
Download PDF Download RIS Download Bibtex

Abstract

The implementations of matrix multiplication on contemporary, vector-oriented, and multicore-oriented computer hardware are very carefully designed and optimized with respect to their efficiency, due to the essential significance of that operation in other science and engineering domains. Consequently, the available implementations are very fast and it is a natural desire to take advantage of the efficiency of those implementations in other problems, both matrix and nonmatrix. Such an approach is often called a black box matrix computation paradigm in the literature on the subject. In this article, we gathered a broad series of algorithms taking advantage of the efficiency of fast matrix multiplication algorithms in other mathematical and computer science operations.
Go to article

Authors and Affiliations

Jerzy Respondek
1

  1. Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, ul. Akademicka 16, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

A class of Xorshift Random Number Generators (RNGs) are introduced by Marsaglia. We have proposed an algorithm which constructs a primitive Xorshift RNG from a given prim- itive polynomial. We also have shown a weakness present in those RNGs and suggested its solution. A separate algorithm also proposed which returns a full periodic Xorshift generator with desired number of Xorshift operations.

Go to article

Authors and Affiliations

Susil Kumar Bishoi
Surya Narayan Maharana
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a new grid integration control scheme that employs spider monkey optimization technique for maximum power point tracking and Lattice Levenberg Marquardt Recursive estimation with a hysteresis current controller for controlling voltage source inverter. This control scheme is applied to a PV system integrated to a three phase grid to achieve effective grid synchronization. To verify the efficacy of the proposed control scheme, simulations were performed. From the simulation results it is observed that the proposed controller provides excellent control performance such as reducing THD of the grid current to 1.75%.
Go to article

Bibliography

[1] I. Dincer: Renewable energy and sustainable development: a crucial review. Renewable and Sustainable Energy Reviews, 4(2), (2000), 157–175, DOI: 10.1016/S1364-0321(99)00011-8.
[2] S. Gulkowski, J.V.M. Diez, J.A. Tejero, and G. Nofuentes: Computational modeling and experimental analysis of heterojunction with intrinsic thin-layer photovoltaic module under different environmental conditions. Energy, 172, (2019), 380–390, DOI: 10.1016/j.energy.2019.01.107.
[3] M. Bahrami, et al.: Hybrid maximum power point tracking algorithm with improved dynamic performance. Renewable Energy, 130, (2019), 982–991, DOI: 10.1016/j.renene.2018.07.020.
[4] K.V. Singh, Krishna, H. Bansal, and D. Singh: A comprehensive review on hybrid electric vehicles: architectures and components. Journal of Modern Transportation, 27, (2019), 1–31, DOI: 10.1007/s40534-019-0184-3.
[5] S. Pradhan, et al.: Performance Improvement of Grid-Integrated Solar PV System Using DNLMS Control Algorithm. IEEE Transactions on Industry Applications, 55(1), (2019), 78–91, DOI: 10.1109/TIA.2018.2863652.
[6] S. Negari and D. Xu: Utilizing a Lagrangian approach to compute maximum fault current in hybrid AC–DC distribution grids withMMCinterface. High Voltage, 4(1), (2019), 18–27, DOI: 10.1049/hve.2018.5087.
[7] V.T. Tran et al.: Mitigation of Solar PV Intermittency Using Ramp-Rate Control of Energy Buffer Unit. IEEE Transactions on Energy Conversion, 34(1), (2019), 435–445, DOI: 10.1109/TEC.2018.2875701.
[8] A. Kihal, et al.: An improved MPPT scheme employing adaptive integral derivative sliding mode control for photovoltaic systems under fast irradiation changes. ISA Transactions, 87, (2019), 297–306, DOI: 10.1016/j.isatra.2018.11.020.
[9] A.M. Jadhav, N.R. Patne, and J.M. Guerrero: A novel approach to neighborhood fair energy trading in a distribution network of multiple microgrid clusters. IEEE Transactions on Industrial Electronics, 66(2), (2019), 1520– 1531, DOI: 10.1109/TIE.2018.2815945.
[10] A. Fragaki, T. Markvart, and G. Laskos: All UK electricity supplied by wind and photovoltaics – The 30–30 rule. Energy, 169, (2019), 228–237, DOI: 10.1016/j.energy.2018.11.151.
[11] S.Z. Ahmed, et al.: Power quality enhancement by using D-FACTS systems applied to distributed generation. International Journal of Power Electronics and Drive Systems, 10(1), (2019), 330, DOI: 10.11591/ijpeds.v10.i1.pp330-341.
[12] H.H. Alhelou, et al.: A Survey on Power System Blackout and Cascading Events: Research Motivations and Challenges. Energies. 12(4), (2019), 1– 28, DOI: 10.3390/en12040682.
[13] M. Badoni, A. Singh, and B. Singh: Implementation of Immune Feedback Control Algorithm for Distribution Static Compensator. IEEE Transactions on Industry Applications, 55(1), (2019), 918–927, DOI: 10.1109/TIA.2018.2867328.
[14] S.R. Das, et al.: Performance evaluation of multilevel inverter based hybrid active filter using soft computing techniques. Evolutionary Intelligence (2019), 1–11, DOI: 10.1007/s12065-019-00217-6.
[15] F. Chishti, S. Murshid, and B. Singh: LMMN Based Adaptive Control for Power Quality Improvement of Grid Intertie Wind-PV System. IEEE Transactions on Industrial Informatics, 15(9), (2019), 4900–4912, DOI: 10.1109/TII.2019.2897165.
[16] S. Pradhan, et al.: Performance Improvement of Grid-Integrated Solar PV System Using DNLMS Control Algorithm. IEEE Transactions on Industry Applications, 55(1), (2019), 78–91, DOI: 10.1109/IICPE.2016.8079455.
[17] V. Jain, I. Hussain, and B. Singh: A HTF-Based Higher-Order Adaptive Control of Single-Stage Grid-Interfaced PV System. IEEE Transactions on Industry Applications, 55(2), (2019), 1873–1881, DOI: 10.1109/TIA.2018.2878186.
[18] N. Kumar, B. Singh, B. Ketan Panigrahi and L. Xu: Leaky Least Logarithmic Absolute Difference Based Control Algorithm and Learning Based InC MPPT Technique for Grid Integrated PV System. IEEE Transactions on Industrial Electronics. 66(11), (2019), 9003–9012, DOI: 10.1109/TIE.2018.2890497.
[19] P. Shah, I. Hussain, and B. Singh: Single-Stage SECS Interfaced with Grid Using ISOGI-FLL- Based Control Algorithm. IEEE Transactions on Industry Applications, 55(1), (2019), 701–711, DOI: 10.1109/TIA.2018.2869880.
[20] V. Jain and B. Singh: A Multiple Improved Notch Filter-Based Control for a Single-StagePVSystem Tied to aWeak Grid. IEEE Transactions on Sustainable Energy, 10(1), (2019), 238–247, DOI: 10.1109/TSTE.2018.2831704.
[21] N. Mohan and T. M. Undeland: Power electronics: converters, applications, and design. John Wiley & Sons, 2007.
[22] M. Badoni, et al.: Grid interfaced solar photovoltaic system using ZA-LMS based control algorithm. Electric Power Systems Research, 160, (2018), 261–272, DOI: 10.1016/j.epsr.2018.03.001.
[23] M. Rezkallah, et al.: Lyapunov function and sliding mode control approach for the solar-PV grid interface system. IEEE Transactions on Industrial Electronics, 64(1), (2016), 785–795, DOI: 10.1109/tie.2016.2607162.
[24] N. Kumar, B. Singh, and B.K. Panigrahi: Integration of Solar PV with Low- Voltage Weak Grid System: using Maximize-M Kalman Filter and Self-Tuned P&O Algorithm. IEEE Transactions on Industrial Electronics, 66(11), (2019), 9013–9022, DOI: 10.1109/tie.2018.2889617.
[25] H. Sharma, G. Hazrati, and J.Ch.Bansal: Spider monkey optimization algorithm. Evolutionary and swarm intelligence algorithms. Springer, Cham, 2019, 43–59.
[26] K. Neelu, P. Devan, Ch.L. Chowdhary, S. Bhattacharya, G. Singh, S. Singh, and B. Yoon: Smo-dnn: Spider monkey optimization and deep neural network hybrid classifier model for intrusion detection. Electronics, 9(4), (2020), 692, DOI: 10.3390/electronics9040692.
[27] M.A.H. Akhand, S.I. Ayon, A.A. Shahriyar, and N. Siddique: Discrete spider monkey optimization for travelling salesman problem. Applied Soft Computing, 86 (2020), DOI: 10.1016/j.asoc.2019.105887.
[28] Avinash Sharma, Akshay Sharma, B.K. Panigrahi, D. Kiran, and R. Kumar: Ageist spider monkey optimization algorithm. Swarm and Evolutionary Computation, 28 (2016), 58–77, DOI: 10.1016/j.swevo.2016.01.002.
[29] Sriram Mounika and K. Ravindra: Backtracking Search Optimization Algorithm Based MPPT Technique for Solar PV System. In Advances in Decision Sciences, Image Processing, Security and Computer Vision. Springer, Cham, 2020, 498–506.
[30] Pilakkat, Deepthi and S. Kanthalakshmi: Single phase PV system operating under Partially Shaded Conditions with ABC-PO as MPPT algorithm for grid connected applications. Energy Reports, 6 (2020), 1910–1921, DOI: 10.1016/j.egyr.2020.07.019.
[31] R. Gessing: Controllers of the boost DC-DC converter accounting its minimum- and non-minimum-phase nature. Archives of Control Sciences, 19(3), (2009), 245–259.
[32] A. Talha and H. Boumaaraf: Evaluation of maximum power point tracking methods for photovoltaic systems. Archives of Control Sciences, 21(2), (2011), 151–165.
[33] S.N. Singh and S. Mishra: FPGA implementation of DPWM utility/DG interfaced solar (PV) power converter for green home power supply. Archives of Control Sciences, 21(4), (2011), 461–469.
Go to article

Authors and Affiliations

Dipak Kumar Dash
1
Pradip Kumar Sadhu
1
Bidyadhar Subudhi
2

  1. Department of Electrical Engineering, Indian Institute of Technology (ISM), Dhanbad, India
  2. School of Electrical Sciences, Indian Institute of Technology Goa, GEC Campus, Farmagudi, Ponda-401403, Goa, India
Download PDF Download RIS Download Bibtex

Abstract

It is shown how a stability test, alternative to the classical Routh test, can profitably be applied to check the presence of polynomial roots inside half-planes or even sectors of the complex plane. This result is obtained by exploiting the peculiar symmetries of the root locus in which the basic recursion of the test can be embedded. As is expected, the suggested approach proves useful for testing the stability of fractional-order systems. A pair of examples show how the method operates. It is believed that the suggested geometric approach can also be of some didactic value in introducing basic control-system tools to engineering students.
Go to article

Bibliography

[1] J.J. Anagnost, C.A. Desoer, and R.J. Minnichelli: Graphical stability robustness tests for linear time-invariant systems: Generalizations of Kharitonov’s stability theorem, Proceedings of the 27th IEEE Conference on Decision and Control (1988), 509–514.
[2] A.T. Azar, A.G. Radwan, and S.Vaidyanathan, Eds.: Mathematical Techniques of Fractional Order Systems, Elsevier, Amsterdam, The Netherlands, 2018.
[3] R. Becker, M. Sagraloff. V. Sharma, J. Xu, and C. Yap: Complexity analysis of root clustering for a complex polynomial, Proceedings of the 41th ACM International Symposium on Symbolic and Algebraic Computation, (2016), 71–78.
[4] T.A. Bickart and E.I. Jury: The Schwarz–Christoffel transformation and polynomial root clustering, IFAC Proceedings 11(1), (1978), 1171–1176.
[5] Y. Bistritz: Optimal fraction–free Routh tests for complex and real integer polynomials, IEEE Transactions on Circuits and Systems I: Regular Papers 60(9), (2013), 2453–2464.
[6] D. Casagrande, W. Krajewski, and U. Viaro: On polynomial zero exclusion from an RHP sector, Proceedings of the 23rd IEEE International Conference on Methods and Models in Automation and Robotics, (2018), 648–653.
[7] D. Casagrande, W. Krajewski, and U. Viaro: Fractional-order system forced-response decomposition and its application, In Mathematical Techniques of Fractional Order Systems, A.T. Azar, A.G. Radwan, and S. Vaidyanathan, Eds., Elsevier, Amsterdam, The Netherlands, 2018.
[8] A. Cohn: Über die Anzahl der Wurzeln einer algebraischen Gleichung in einem Kreise, Mathematische Zeitschrift 14, (1922), 110–148, DOI: 10.1007/BF01215894.
[9] Ph. Delsarte and Y. Genin: The split Levinson algorithm, IEEE Transactions on Acoustics, Speech, and Signal Processing ASSP, 34(3), (1986), 470–478.
[10] Ph. Delsarte and Y. Genin: On the splitting of classical algorithms in linear prediction theory, IEEE Transactions onAcoustics, Speech, and Signal Processing ASSP, 35(5), (1987), 645–653.
[11] A. Doria–Cerezo and M. Bodson: Root locus rules for polynomials with complex coefficients, Proceedings of the 21st Mediterranean Conference on Control and Automation, (2013), 663–670.
[12] A. Doria–Cerezo and M. Bodson: Design of controllers for electrical power systems using a complex root locus method, IEEE Transactions on Industrial Electronics, 63(6), (2016), 3706–3716.
[13] A. Ferrante, A. Lepschy, and U. Viaro: A simple proof of the Routh test, IEEE Transactions on Automatic Control, AC-44(1), (1999), 1306–1309.
[14] A. Hurwitz: Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt, Mathematiche Annalen Band, 46 (1895), 273–284.
[15] R. Imbach and V.Y. Pan: Polynomial root clustering and explicit deflation, arXiv:1906.04920v2.
[16] E.I. Jury and J. Blanchard: A stability test for linear discrete systems in table form, I.R.E. Proceedings, 49(12), (1961), 1947–1948.
[17] T. Kaczorek: Selected Problems of Fractional Systems Theory, Lecture Notes in Control and Information Sciences, 411, Springer, Berlin, Germany, 2011.
[18] W. Krajewski, A. Lepschy, G.A. Mian, and U. Viaro: A unifying frame for stability-test algorithms for continuous-time systems, IEEE Transactions on Circuits and Systems, CAS-37(2), (1990), 290–296.
[19] W. Krajewski, A. Lepschy, G.A. Mian, and U. Viaro: Common setting for some classical z-domain algorithms in linear system theory, International Journal of Systems Science, 21(4), (1990), 739–747.
[20] W. Krajewski and U. Viaro: Root locus invariance: Exploiting alternative arrival and departure points, IEEE Control Systems Magazine, 27(1), (2007), 36–43.
[21] B.C. Kuo: Automatic Control Systems (second ed.), (1967), Prentice-Hall, Englewood Cliffs, NJ, USA.
[22] P.K.Kythe: Handbook of Conformal Mappings and Applications, Chapman and Hall/CRC Press, London, UK, 2019.
[23] A. Lepschy, G.A. Mian, and U. Viaro: A stability test for continuous systems, Systems and Control Letters, 10(3), (1988), 175–179.
[24] A. Lepschy, G.A. Mian, and U. Viaro: A geometrical interpretation of the Routh test, Journal of the Franklin Institute, 325(6), (1988), 695–703.
[25] A. Lepschy, G.A. Mian, and U. Viaro: Euclid-type algorithm and its applications, International Journal of Systems Science, 20(6), (1989), 945– 956.
[26] A. Lepschy, G.A. Mian, andU. Viaro: Splitting of some s-domain stabilitytest algorithms, International Journal of Control, 50(6), (1989), 2237–2247.
[27] A. Lepschy, G.A. Mian, and U. Viaro: An alternative proof of the Jury- Marden stability criterion, Control and Computers, 18(3), (1990), 70–73.
[28] A. Lepschy, G.A. Mian, and U. Viaro: Efficient split algorithms for continuous-time and discrete-time systems, Journal of the Franklin Institute, 328(1), (1991), 103–121.
[29] A. Lepschy and U. Viaro: On the mechanism of recursive stability-test algorithms, International Journal of Control, 58(2), (1993), 485–493.
[30] A. Lepschy and U. Viaro: Derivation of recursive stability-test procedures, Circuits, Systems, and Signal Processing, 13(5), (1994), 615–623.
[31] S. Liang, S.G. Wang, and Y. Wang: Routh-type table test for zero distribution of polynomials with commensurate fractional and integer degrees, Journal of the Franklin Institute, 354(1), (2017), 83–104.
[32] A. Lienard and M.H. Chipart: Sur le signe de la partie réelle des racines d’une équation algébrique, Journal of Mathématiques Pures et Appliquée, 10(6), (1914), 291–346.
[33] M. Marden: Geometry of Polynomials [2nd ed.], American Mathematical Society, Providence, RI, USA, 1966.
[34] I. Petras: Stability of fractional-order systems with rational orders: a survey, Fractional Calculus & Applied Analysis, 12(3), (2009), 269–298.
[35] A.G. Radwan, A.M. Soliman, A.S. Elwakil, and A. Sedeek: On the stability of linear systems with fractional order elements, Chaos, Solitons and Fractals, 40(5), (2009), 2317–2328.
[36] E.J. Routh: A Treatise on the Stability of a Given State of Motion, Particularly Steady Motion, Macmillan, London, UK, 1877.
[37] J. Schur: Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind, Journal für die reine und angewandte Mathematik, 147, (1917) 205– 232, DOI: 10.1515/crll.1917.147.205.
[38] R.Tempo: A Simple Test for Schur Stability of a Diamond of Complex Polynomials, Proceedings of the 28th IEEE Confewrence on Decision and Control (1989), 1892–1895.
[39] U. Viaro: Stability tests revisited, In A Tribute to Antonio Lepschy, G. Picci and M.E. Valcher, Eds., Edizioni Libreria Progetto, Padova, Italy, pp. 189– 199, 2007.
[40] U. Viaro: Twenty–Five Years of Research with Antonio Lepschy, Edizioni Libreria Progetto, Padova, Italy, 2009.
[41] U. Viaro (preface by W. Krajewski): Essays on Stability Analysis and Model Reduction, Polish Academy of Sciences, Warsaw, Poland, 2010.
[42] R.S. Vieira: Polynomials with symmetric zeros, arXiv:1904.01940v1 [math.CV], 2019.
Go to article

Authors and Affiliations

Daniele Casagrande
1
Wiesław Krajewski
2
Umberto Viaro
1

  1. Polytechnic Department of Engineering and Architecture, University of Udine, via delle Scienze 206, 33100 Udine, Italy
  2. Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6, 01–447 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Baseflow is the primary source of water for irrigation and other water needs during prolonged dry periods; accurate and rapid estimation of baseflow is therefore crucial for water resource allocation. This research aims to estimate baseflow contribution during dry periods in three small watersheds in East Java: Surabaya-Perning (114 km2), Lamong-Simoanggrok (235 km2), and Bangsal-Kedunguneng (26 km2). Six recursive digital filters (RDFs) algorithms are explored using a procedure consisting of calibration, validation, evaluation and interpretation. In this study, the period of July to September is considered as the peak of the dry season. Moreover, data for the period 1996 to 2005 is used to calibrate the algorithms. By yearly averaging, values are obtained for the parameters and then used to test performance during the validation period from 2006 to 2015. Statistical analysis, flow duration curves and hydrographs are used to evaluate and compare the performance of each algorithm. The results show that all the filters explored can be applied to estimate baseflow in the region. However, the Lyne–Hollick (with RMSE = 0.022, 0.125, 0.010 and R2 = 0.951, 0.968, 0.712) and exponentially weighted moving average or EWMA (with RMSE = 0.022, 0.124, 0.009 and R2 = 0.957, 0.968, 0.891) for the three sub-watersheds versions give the best performance.
Go to article

Authors and Affiliations

Indarto Indarto
1
ORCID: ORCID
Mujiono Hardiansyah
1
Mohamad Wawan Sujarwo
1
ORCID: ORCID

  1. University of Jember, Faculty of Agricultural Technology, Jl kalimantan No. 37 Kampus Tegalboto, 68121, Jember, Jawa Timur, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a new application of the Numerical Assembly Technique is presented for the balancing of linear elastic rotor-bearing systems with a stepped shaft and arbitrarily distributed mass unbalance. The method improves existing balancing techniques by combining the advantages of modal balancing with the fast calculation of an efficient numerical method. The rotating stepped circular shaft is modelled according to the Rayleigh beam theory. The Numerical Assembly Technique is used to calculate the steady-state harmonic response, eigenvalues and the associated mode shapes of the rotor. The displacements of a simulation are compared to measured displacements of the rotor-bearing system to calculate the generalized unbalance for each eigenvalue. The generalized unbalances are modified according to modal theory to calculate orthogonal correction masses. In this manner, a rotor-bearing system is balanced using a single measurement of the displacement at one position on the rotor for every critical speed. Three numerical examples are used to show the accuracy and the balancing success of the proposed method.
Go to article

Bibliography

  1.  J. Tessarzik, Flexible rotor balancing by the exact point speed influence coefficient method. Latham: Mechanical Technology Incorporated, 1972.
  2.  P. Gnielka, “Modal balancing of flexible rotors without test runs: An experimental investigation,” Journal of Vibrations, vol. 90, no. 2, pp. 152–170, 1982.
  3.  K. Federn, “Grundlagen einer systematischen Schwingungsentstörung wellenelastischer Rotoren,” VDI Bericht, vol. 24, pp.  9‒25, 1957.
  4.  A. G. Parkinson and R. E. D. Bishop, “Residual vibration in modal balancing,” Journal of Mechanical Engineering Science, vol. 7, pp. 33–39, 1965.
  5.  W. Kellenberger, “Das Wuchten elastischer Rotoren auf zwei allgemeinelastischen Lagern,” Brown Boveri Mitteilungen, vol. 54, pp. 603– 617, 1967.
  6.  A.-C. Lee, Y.-P. Shih, and Y. Kang, “The analysis of linear rotor bearing systems: A general Transfer Matrix Method,” Journal of Vibration and Accoustics, vol. 115, no. 4, pp. 490–497, 1993.
  7.  J.-S. Wu and H. M. Chou, “A new approach for determining the natural frequency of mode shapes of a uniform beam carrying any number of sprung masses,” Journal of Sound and Vibration, vol.  220, no. 3, pp. 451–468, 1999.
  8.  J.-S. Wu, F.-T. Lin, and H.-J. Shaw, “Analytical solution for whirling speeds and mode shapes of a distributed-mass shaft with arbitrary rigid disks,” Journal of Applied Mechanics, vol. 81, no. 3, pp. 034 503–1–034 503–10, 2014.
  9.  M. Klanner, M.S. Prem, and K. Ellermann, “Steady-state harmonic vibrations of a linear rotor- bearing system with a discontinuous shaft and arbitrarily distributed mass unbalance,” in Proceedings of ISMA2020 International Conference on Noise and Vibration Engineering and USD2020 International Conference on Uncertainty in Structural Dynamics, 2020, pp. 1257–1272.
  10.  M. Klanner and K. Ellermann, “Steady-state linear harmonic vibrations of multiple-stepped Euler-Bernoulli beams under arbitrarily distributed loads carrying any number of concentrated elements,” Applied and Computational Mechanics, vol. 14, no. 1, pp. 31–50, 2019.
  11.  M.B. Deepthikumar, A.S. Sekhar, and M.R. Srikanthan, “Modal balancing of flexible rotors with bow and distributed unbalance,” Journal of Sound and Vibration, vol. 332, pp. 6216‒6233, 2013.
  12.  O.A. Bauchau and J.I. Craig, Structural Analysis – With Applications to Aerospace Structures. Heidelberg: Springer Verlag, 2009.
  13.  R.E.D. Bishop and A.G. Parkinson, “On the isolation of modes in balancing of flexible shafts,” Proc. Inst. Mech. Eng., vol. 117, pp. 407– 426, 1963.
  14.  X. Rui, G. Wang, Y. Lu, and L. Yunm, “Transfer Matrix Method for linear multibody systems,” Multibody Syst. Dyn., vol.  19, pp. 179–207, 2008.
  15.  I.N. Bronstein, K.A. Semendjajew, and E. Zeidler, Taschenbuch der Mathematik. Stuttgard: Teubner, 1996.
  16.  D. Bestle, L. Abbas, and X. Rui, “Recursive eigenvalue search algorithm for transfer matrix method of linear flexible multibody systems,” Multibody Syst. Dyn., vol. 32, pp. 429–444, 2013.
  17.  B. Xu and L. Qu, “A new practical modal method for rotor balancing,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 215, pp.  179–190, 2001.
  18.  J. Tessarzik, Flexible rotor balancing by the influence coefficient method. Part 1: Evaluation of the exact point speed and least squares procedure. Latham: Mechanical Technology Incorporated, 1972.
Go to article

Authors and Affiliations

Georg Quinz
1
Marcel S. Prem
1
Michael Klanner
1
ORCID: ORCID
Katrin Ellermann
1

  1. Graz University of Technology, Institute of Mechanics, Kopernikusgasse 24/IV, 8010 Graz, Austria
Download PDF Download RIS Download Bibtex

Abstract

The article describes motion planning of an underwater redundant manipulator with revolute joints moving in a plane under gravity and in the presence of obstacles. The proposed motion planning algorithm is based on minimization of the total energy in overcoming the hydrodynamic as well as dynamic forces acting on the manipulator while moving underwater and at the same time, avoiding both singularities and obstacle. The obstacle is considered as a point object. A recursive Lagrangian dynamics algorithm is formulated for the planar geometry to evaluate joint torques during the motion of serial link redundant manipulator fully submerged underwater. In turn the energy consumed in following a task trajectory is computed. The presence of redundancy in joint space of the manipulator facilitates selecting the optimal sequence of configurations as well as the required joint motion rates with minimum energy consumed among all possible configurations and rates. The effectiveness of the proposed motion planning algorithm is shown by applying it on a 3 degrees-of-freedom planar redundant manipulator fully submerged underwater and avoiding a point obstacle. The results establish that energy spent against overcoming loading resulted from hydrodynamic interactions majorly decides the optimal trajectory to follow in accomplishing an underwater task.
Go to article

Bibliography

[1] D.E. Whitney. Resolved motion rate control of manipulators and human prostheses. IEEE Transaction on Man-Machine System, 10(2):47–53,1969. doi: 10.1109/TMMS.1969.299896.
[2] Z. Shiller and H-H. Lu. Computation of path constrained time optimal motions with dynamic singularities. Journal of Dynamic Systems, Measurement, and Control, 114(1):34–40,1992. doi: 10.1115/1.2896505.
[3] N. Faiz and S.K. Agrawal.Trajectory planning of robots with dynamics and inequalities. In Proceedings IEEE International Conference on Robotics and Automation, pages 3976–3982, 2000. doi: 10.1109/ROBOT.2000.845351.
[4] S. Macfarlane and E.A. Croft. Jerk-bounded manipulator trajectory planning: design for realtime applications. IEEE Transactions on Robotics and Automation, 19(1):42–52, 2003. doi: 10.1109/TRA.2002.807548.
[5] G. Antonelli, S. Chiaverini, and N. Sarkar. External force control for underwater vehiclemanipulator systems. IEEE Transactions on Robotics and Automation, 17(6):931–938, 2001. doi: 10.1109/70.976027.
[6] D. Yoerger and J. Slotine. Robust trajectory control of underwater vehicles. IEEE Journal of Oceanic Engineering, 10(4):462–470, 1985. doi: 10.1109/JOE.1985.1145131.
[7] A. Alvarez, A. Caiti, and R. Onken. Evolutionary path planning for autonomous underwater vehicles in a variable ocean. IEEE Journal of Oceanic Engineering, 29(2):418–429, 2004. doi: 10.1109/JOE.2004.827837.
[8] N. Sarkar and T.K. Podder. Coordinated motion planning and control of autonomous underwater vehicle-manipulator systems subject to drag optimization. IEEE Journal of Oceanic Engineering, 26(2):228–239, 2001. doi: 10.1109/48.922789.
[9] J. Yuh. Modeling and control of underwater robotic vehicles. IEEE Transactions on Systems, Man and Cybernetics, 20(6):1475–1483, 1990. doi: 10.1109/21.61218.
[10] B. Lévesque and M.J. Richard. Dynamic analysis of a manipulator in a fluid environment. International Journal of Robotics Research, 13(3):221–231, 1994. doi: 10.1177/027836499401300304.
[11] T.I. Fossen. Guidance and Control of Ocean Vehicles. John Wiley, New York, 1994.
[12] G. Antonelli. Underwater Robots. 2nd ed. Springer, 2006.
[13] T.J. Tarn, G.A. Shoults, and S.P. Yang. A dynamic model of an underwater vehicle with a robotic manipulator using Kane’s method. Autonomous Robots, 3:269–283, 1996. doi: 10.1007/BF00141159.
[14] J.M. Hollerbach. A recursive Lagrangian formulation of manipulator dynamics and a comparative study of dynamics formulation complexity. IEEE Transactions on Systems, Man, and Cybernetics, 10(11):730–736, 1980. doi: 10.1109/TSMC.1980.4308393.
[15] J.N. Newman. Marine Hydrodynamics. 40th Anniversary Edition. The MIT Press, 2018.
[16] A. Kumar, V. Kumar, and S. Sen. Dynamics of underwater manipulator: a recursive Lagrangian formulation. In R. Kumar, V.S. Chauhan, M. Talha, H. Pathak (Eds.), Machines, Mechanism and Robotics, Lecture Notes in Mechanical Engineering, pages 555–570. Springer, Singapure, 2022. doi: 10.1007/978-981-16-0550-5_56.
[17] A.K. Sharma and S.K. Saha. Simplified drag modeling for the dynamics of an underwater manipulator. IEEE Journal of Ocean Engineering, 46(1):40–55, 2021. doi: 10.1109/JOE.2019.2948412.
[18] R. Colbaugh, H. Seraji, and K.L. Glass. Obstacle avoidance for redundant robots using configuration control. Journal of Robotics Systems, 6(6):721–744,1989. doi: 10.1002/rob.4620060605.
Go to article

Authors and Affiliations

Virendra Kumar
1
ORCID: ORCID
Soumen Sen
1
Shibendu Shekhar Roy
2

  1. Robotics and Automation Division, CSIR-Central Mechanical Engineering Research Institute, Durgapur, India
  2. Mechanical Engineering Department, National Institute of Technology, Durgapur, India

This page uses 'cookies'. Learn more