Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 52
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A method of suppressing chaotic oscillations in a tubular reactor with mass recycle is discussed. The method involves intervention in the temperature of the input flow by the recirculation flow and the temperature set from the exterior. The most advantageous solution was proved to be heat coupling elimination and maintenance of the reactor input temperature on the set level. Moreover, the reactor modelwas identified on the basis of a chaotic solution, as it provides the biggest entropy of information.

Go to article

Authors and Affiliations

Marek Berezowski
Download PDF Download RIS Download Bibtex

Abstract

A356 is one of the widely used aluminium casting alloy that has been used in both sand and die casting processes. Large amounts of scrap

metal can be generated from the runner systems and feeders. In addition, chips are generated in the machined parts. The surface area with

regard to weight of chips is so high that it makes these scraps difficult to melt. Although there are several techniques evolved to remedy

this problem, yet the problem lies in the quality of the recycled raw material. Since recycling of these scrap is quite important due to the

advantages like energy saving and cost reduction in the final product, in this work, the recycling efficiency and casting quality were

investigated. Three types of charges were prepared for casting: %100 primary ingot, %100 scrap aluminium and fifty-fifty scrap

aluminium and primary ingot mixture were used. Melt quality was determined by calculating bifilm index by using reduced pressure test.

Tensile test samples were produced by casting both from sand and die moulds. Relationship between bifilm index and tensile strength were

determined as an indication of correlation of melt quality. It was found that untreated chips decrease the casting quality significantly.

Therefore, prior to charging the chips into the furnace for melting, a series of cleaning processes has to be used in order to achieve good

quality products.

Go to article

Authors and Affiliations

C. Yuksel
O. Tamer
E. Erzi
U. Aybarc
E. Cubuklusu
O. Topcuoglu
M. Cigdem
D. Dispinar
Download PDF Download RIS Download Bibtex

Abstract

Accordingly with the principles of the circular economy, mixed plastic wastes can be recycled also by thermoforming, getting new non-oriented fibers composite materials. This study highlights the mechanical behavior of new composite material plates containing recycled glass fibers as reinforcing element and ABS-PMMA mixture as matrix, as well as an efficient way to convert a manufacturing process wastes in a product. The mechanical behavior of new composite material plates was evidenced by tensile, flexural and compression tests. In addition a surface morphology analysis was performed.
Go to article

Authors and Affiliations

M.A. Platon
1
ORCID: ORCID
O. Nemeș
1 2
ORCID: ORCID
A.-E. Tiuc
1
ORCID: ORCID
C. Vilău
3
ORCID: ORCID
C.M. Dudescu
3
ORCID: ORCID
S. Pădurețu
4
ORCID: ORCID

  1. Technical University of Cluj-Napoca, Faculty of Materials and Environmental Engineering, 28 Memorandumului Street, 400114, Cluj-Napoca, Romania
  2. National Institute for Research and Development in Environmental Protection, 294 Blvd. Splaiul Independentei, Sector 6, 060031, Bucharest, Romania
  3. Technical University of Cluj-Napoca, Faculty of Automotive, Mechatronics and Mechanical Engineering, 28 Memorandumului Street, 400114, Cluj-Napoca, Romania
  4. Technical University of Cluj-Napoca, Faculty of Machine Building, 28 Memorandumului Street, 400114, Cluj-Napoca, Romania.
Download PDF Download RIS Download Bibtex

Abstract

Industrial steelmaking (EAF) flue dust was characterized in terms of chemical and phase compositions, leaching behaviour in 20% sulphuric acid solution as well as leaching thermal effect. Waste product contained about 43% Zn, 27% Fe, 19% O, about 3% Pb and Mn and lesser amounts of other elements (Ca, Si, Mo, etc.). It consisted mainly of oxide-type compounds of iron and zinc. Dissolution of metals (Zn, Fe, Mn) from the dust was determined in a dependence of solid to liquid ratio (50-200 g/L), temperature (20-80oC) and leaching time (up to 120 min). The best result of 60% zinc recovery was obtained for 50 g dust/L and a temperature of 80oC. Leaching of the material was an exothermic process with a reaction heat of about –318 kJ/kg. Precipitation purification of the solution was realized using various ratios of H2O2 to NH3aq. A product of this stage was hydrated iron(III) oxide. Final solution was used for zinc electrowinning. Despite that pure zinc was obtained the highest cathodic current efficiency was only 40%.

Go to article

Authors and Affiliations

E. Rudnik
Download PDF Download RIS Download Bibtex

Abstract

Taking into account the numerous previous attempts to use waste glass for concrete production, an approach was proposed based solely on car side window glass waste. Only side window waste emerging during the production of car side windows was used during the research program. In this way, all key properties of the waste glass were under control (purity, granulometric properties, etc.). Two types of concretes with crushed side window glass, playing the role of coarse aggregate, were created. Concretes were differentiated by the amount of added crushed side window glass, which replaced 10–50% of the natural aggregate. Created concretes were thoroughly tested in the state of both a fresh mix and hardened composite. Consistency and air content of fresh mixes were tested. Slump was ranging from 15 mm to 20 mm and air content was ranging from 2.5% to 3.1%. Hardened composites were used to test apparent density, compressive strength, water absorption, water-tightness and resistance to freeze–thaw cycles. It was proven that concrete with side window glass as partial aggregate substitution is characterized by satisfactory mechanical properties (compressive strength after 28 days of curing was ranging from 51.9 MPa to 54.7 MPa), enabling its application as ordinary structural concrete. Properties of both fresh concrete mixes and hardened concretes based on crushed side window glass are similar to a reference concrete. It was proved that it is possible to replace up to 50% of natural coarse aggregate by crushed side window glass. Possible applications of the concretes in question were proposed. Experience gained during the research program is likely to be useful for tests of using crushed side window glass sourced from decommissioned cars and trucks. Areas where future research is needed are indicated.
Go to article

Authors and Affiliations

Bogdan Langier
1
ORCID: ORCID
Jacek Katzer
2
ORCID: ORCID
Maciej Major
1
ORCID: ORCID
Jacek Halbiniak
1
ORCID: ORCID
Izabela Major
1
ORCID: ORCID

  1. Częstochowa University of Technology, Faculty of Civil Engineering, ul. Dąbrowskiego 69, 42-201 Częstochowa, Poland
  2. University ofWarmia and Mazury in Olsztyn, Faculty of Geoengineering, ul. Oczapowskiego 2,10-719 Olsztyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

Environmental protection is one of the objectives of the implemented concept of sustainable development and circular economy. The construction industry and its products (building objects) have a large contribution in negative influences, therefore all actions limiting them are necessary. One way of doing this is to apply substitution to existing unfavourable solutions, both in terms of construction and materials as well as technology and organization. The aim of the article was to determine the key factors conditioning the use of substitution at each stage of the investment and construction cycle, leading to environmental protection. The research paid attention to the use of substitute recycled products. The defined factors were subjected to a SWOT analysis and then, using the DEMATEL method, cause-andeffect relationships were identified that determine development in the application of substitution in the environmental context of sustainable and closed-cycle construction. The analysis was carried out by using a summative, linear aggregation of the values of the position and relationship indicators.
Go to article

Authors and Affiliations

Anna Sobotka
1
ORCID: ORCID
Kazimierz Linczowski
1
ORCID: ORCID
Aleksandra Radziejowska
1
ORCID: ORCID

  1. AGH University of Science and Technology in Cracow, Faculty of Civil Engineering and Resource Management, Department of Geomechanics, Civil Engineering and Geotechnics, Av. Mickiewicza 30, 30-059 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The Hong Kong Convention is an international attempt to regulate the scrapping of seagoing ships. It aims to ensure that ships recycled at the end of their lives do not pose unnecessary risks to health, safety and the environment. It aims to address all problems associated with ship recycling, including the fact that ships sold for scrap may contain environmentally hazardous substances such as asbestos, heavy metals, hydrocarbons, ozone-depleting substances and others. The Convention provisions also aim to improve working and environmental conditions at many ship recycling sites around the world. The second part of this article on the scrapping of seagoing ships is a translation into Polish of the English text of the Convention adopted in May 2009 by the International Conference on the Safe and Environmentally Sound Recycling of Ships.
Go to article

Bibliography

Ahmed I., Towards a Safe and Sustainable Industry of Ship Breaking: International Initiatives and South Asian Response, Journal of Maritime Law&Commerce, vol. 51, nNo. 3, July, 2020, s. 226; https://www.jmlc.org/Ahmed.pdf [dostęp 1.09.2021 r.]
Contradiction in Term: European Union must align its waste ship exports with international law and green deal, September 2020, s. 3; https://shipbreakingplatform.org/wp-content/uploads/2020/09/Report-EU-SRR-Ban-Amendment-BAN-EEB-GP--SBP.pdf [dostęp 1.09.2021 r.]
Gopal M., Beached Waste and Wasted Beaches: A Critical Analysis of the New Ship Recycling Law in India; rsrr.in/wp-content/uploads/2021/05/Meera-Gopal.pdf [do-stęp 1.09.2021 r.]
Hong Kong International Convention for the Safe and Environmentally Sound Recycling of Ships, 2009. https://www.basel.int/Portals/4/Basel%20Convention/docs/ships/HongKong-Convention.pdf [dostęp 1.09.2021 r.]
Mikelis N., Developments in Ship Recycling in 2019, The Maritime Executive; https://maritime-executive.com/editorials/developments-in-ship-recycling-in-2019 [dostęp 1.12.2020 r.]
Rozporządzenie Parlamentu Europejskiego i Rady (UE) nr 1257/2013 z dnia 20 listo-pada 2013 r. w sprawie recyklingu statków oraz zmieniające rozporządzenie (WE) nr 1013/2006 i dyrektywę 2009/16/WE, Dz. Urz. UE L 330 z 10.12.2013, s. 1
UNCTAD, Review of Maritime Transport 2020, s. 45; https://unctad.org/system/files/official-document/rmt2020_en.pdf [dostęp 1.09.2021 r.]
Go to article

Authors and Affiliations

Cezary Łuczywek
1
ORCID: ORCID

  1. Deputy Managing Director w przedsiębiorstwie zarządzającym statkami (ship manager) Green Management Gdynia
Download PDF Download RIS Download Bibtex

Abstract

The presented article describes the method for determining one of the trace elements occurring in coalbismuth. The subjects of the analysis were coal type 34, 35 and their fly ashes derived from Jastrzębska Spółka Węglowa. The main reason for the research was the extensive use of bismuth in many industry sectors. Additionally, bismuth is on the list of deficit elements, therefore the possibility of obtaining an alternative for its recycling source of it is needed, is required. The research was carried out using atomic absorption spectrometry with electrothermal atomization in a graphite cuvette. The samples were incinerated at 800°C and microwave mineralization in a high-pressure closed system was performed until the spectrometric analysis was achieved. In order to achieve mineralization, a mixture of HF and HNO3 acids was used to turn the samples into acidic solutions. The preparation of the samples was based on available literature data and own observations. In the experiment, the effects of the additive modifier was modified by changing the temperature in further steps: drying, incineration, cooling, atomization and burning were described. In addition, the palladium modifier was used in order to limit secondary reactions and enable the evaporation of matrix components. The measurement conditions which are presented in this article allow for a linear calibration curve to be established. However, this is not clear and the definitive method for determining the bismuth in coal is carried out through the use of ET-AAS.

Go to article

Authors and Affiliations

Dorota Czarna
Download PDF Download RIS Download Bibtex

Abstract

Current practice of waste generation and management in Ukraine has led to an increase in the area of landfills and a loss of the beneficial potential of waste. Today, territorial communities in Ukraine have received enormous new powers within the framework of decentralization, in particular, waste management is now under their jurisdiction. In order to implement the National Waste Management Strategy in Ukraine 2030 and the National Waste Management Plan 2030, communities need to activate the areas of effective disposal of household solid waste (HSW), and for this purpose it is necessary to take into account European norms and standards in this area, as well as share successful Ukrainian and foreign experience. The aim of the study is to analyze a successful case of waste management of a separate community in Ukraine (Illintsi United Territorial Community) as an example for other communities, as well as to develop guidelines for bioenergy recycling of waste in the community under the study with the production of RDF fuel and biogas in order to provide energy resources and improve the condition of the environment. To achieve this goal, there were used the following methods: monographic, deductive, inductive, analysis and synthesis, economic analysis, graphic and tabular, statistical, as well as the case-study method. The conducted research confirmed the growth of waste generation volumes in Ukraine and their limited beneficial use. The developed recommendations on the improvement of the household solid waste management based on the successful case of Illintsi Territorial Community and proposals for organizing the production of RDF fuel and biogas can become a strong basis for the development of communities on the basis of sustainability.
Go to article

Authors and Affiliations

Inna Honcharuk
1
ORCID: ORCID
Dina Tokarchuk
1
ORCID: ORCID
Yaroslav Gontaruk
1
ORCID: ORCID
Halyna Hreshchuk
2
ORCID: ORCID

  1. Vinnytsia National Agrarian University, Ukraine
  2. Lviv National University of Nature Management, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an assessment of flotation efficiency in the separation of plastics from metals derived from printed circuit boards (PCBs). The PCBs were ground in a knife mill prior to flotation. The contact angles of various materials corresponding to the grains from ground PCBs were measured, and a series of flotation tests was carried out to obtain the best product. The impact of the following parameters were investigated: the reagent and its dose, the airflow rate through the flotation tank and the feed concentration. The highest efficiency of metal recovery from PCBs was achieved for Dimethoxy dipropyleneglycol at a concentration of 157 mg/dm3 and with an airflow of 200 dm3/h and a feed concentration of <50 g/dm3. In the hydrophilic product (concentrate), it was mainly Cu (40%) and Sn (7.8%) that were identified by means of XRF, but there were also trace amounts of precious metals such as Au (0.024%), Ag (0.5797%) and Pd (149 ppm). Impurities in the form of Si (5%), Ca (3.2) and Br (2.1) were also identified in this product. Small amounts of metals in their metallic form were identified in the hydrophobic product (waste), mainly Cu (2.3), Al (1.7) and Sn (1.1). As a result of the research, high recovery ratios were obtained for Cu (93%), Sn (84), Ag (83) and Au (69). The purity of obtained metal concentrate with this method was lower in comparison with the other methods of the recovery of metals from ground PCBs for the same feed, i.e. electrostatic or gravity separation. Also considering other factors such as the environmental impact of the flotation process, the number of facilities and their energy consumption, this process should not be used in the developed metal recovery technology. Using electrostatic separation for the same feed obtained much better results.
Go to article

Authors and Affiliations

Dawid M. Franke
1
ORCID: ORCID
Umut Kar
2
ORCID: ORCID
Tomasz Suponik
1
ORCID: ORCID
Tomasz Siudyga
3
ORCID: ORCID

  1. Silesian University of Technology, Gliwice, Poland
  2. Eskisehir Osmangazi University, Turkey
  3. University of Silesia, Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Building a Strategic Battery Value Chain in Europe COM/2019/176 is a priority for EU policy. Europe’s current share of global cell production is only 3%, while Asia has already reached 85%. To ensure a competitive position and independence in the battery market, Europe must act quickly and comprehensively in the field of innovation, research and construction of the infrastructure needed for large-scale battery production. The recycling of used batteries can have a significant role in ensuring EU access to raw materials. In the coming years, a very rapid development of the battery and rechargable battery market is forecast throughout the EU. In the above context, the recycling of used batteries plays an important role not only because of their harmful content and environmental impact, or adverse impact on human health and life, but also the ability to recover many valuable secondary raw materials and combine them in the battery life cycle (Horizon 2010 Work Programme 2018–2020 (European Commission Decision C(2019) 4575 of 2 July 2019)). In Poland, more than 80% of used batteries are disposable batteries, which, together with municipal waste, end up in a landfill and pose a significant threat to the environment. This paper examines scenarios and directions for development of the battery recycling market in Poland based on the analysis of sources of financing, innovations as well as economic and legal changes across the EU and Poland concerning recycling of different types of batteries and rechargable batteries.

Go to article

Authors and Affiliations

Agnieszka Nowaczek
ORCID: ORCID
Joanna Kulczycka
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Thanks to their excellent strength and durability, composite materials are used to manufacture many important structural elements. In the face of their extensive use, it is crucial to seek suitable methods for monitoring damages and locating their origins. The purpose of the article was to verify the possibility of applying the acoustic emissions (AE) method in the detection of damages in the structures of composite materials. The experimental part comprised static tensile tests carried out on various sandwich composites, including simultaneous registration of elastic waves with increasing loads, carried out with the use of an acousticelectrical sensor connected. The signal obtained from the sensor was then further processed and used to draw up diagrams of the AE hits, amplitude, root mean square of the AE source signal (RMS) and duration in the function of time. These diagrams were then applied on their corresponding stretching curves, the obtained charts were analysed. The results obtained point to a conclusion that the acoustic emissions method can be successfully used to detect and locate composite material damages.
Go to article

Bibliography

1. Aggelis D., Barkoula N.-M., Matikas T., Paipetis A. (2012), Acoustic structural health monitoring of composite materials: Damage identification and evaluation in cross ply laminates using acoustic emission and ultrasonics, Composities Science and Technology, 72(10): 1127–1133, doi: 10.1016/ j.compscitech.2011.10.011.
2. Al-Jumaili S.K., Pearson M.R., Holford K.M., Eaton M.J., Pullin R. (2016), Acoustic emission source location in complex structures using full automatic delta T mapping technique, Mechanical Systems and Signal Processing, 72–73: 513–524, doi: 10.1016/j.ymssp.2015.11.026.
3. Caesarendra W., Kosasih B., Tieu A.K., Zhu H., Moodie C.A.S., Zhu Q. (2016), Acoustic emissionbased condition monitoring methods: Review and application for low speed slew bearing, Mechanical Systems and Signal Processing, 72–73: 134–159, doi: 10.1016/j.ymssp.2015.10.020.
4. De Rosa I., Santulli C., Sarasini F. (2009), Acoustic emission for monitoring the mechanical behaviour of natural fibre composites: A literature review, Composites Part A: Applied Science and Manufacturing, 40(9): 1456–1469, doi: 10.1016/j.composite sa.2009.04.030.
5. Dudzik K., Labuda W. (2020), The possibility of applying acoustic emission and dynamometric methods for monitoring the turning process, Materials (Basel), 13(13): 2926, doi: 10.3390/ma13132926.
6. Gołaski L. (1994), Acoustic emission in composite materials [in Polish: Emisja akustyczna w materiałach kompozytowych], [in]: Małecki J., Ranachowski Z. [Eds], Acoustic emission. Sources. Methods. Usage [in Polish: Emisja akustyczna. Zródła. Metody. Zastosowania], Warszawa: PASCAL.
7. Gutkin R., Green C.J., Vangrattanachai S., Pinho S.T., Robinson P., Curtis P.T. (2011), On acoustic emission for failure investigation in CFRP: Pattern recognition and peak frequency analyses, Mechanical Systems and Signal Processing, 25(4): 1393– 1407, doi: 10.1016/j.ymssp.2010.11.014.
8. Hoła J. (1999), Acoustic-emission investigation of failure of high strength concrete, Archives of Acoustics, 24(2): 233–244.
9. Juskowiak E., Małdachowska A., Panek M. (2013), Acoustic emission of composite sandwich panels during three-point bending [in Polish: Emisja akustyczna kompozytowych płyt przekładkowych podczas trójpunktowego zginania], Przetwórstwo Tworzyw, 19(4): 351– 354.
10. Kurzydłowski K., Boczkowska A.S.J., Konopka K., Spychalski W. (2005), Monitoring of failures in the composites by non-destructive methods [in Polish: Monitorowanie uszkodzen w kompozytach metodami nieniszczacymi], Polymers, 50(4): 255–261.
11. Kyzioł L., Panasiuk K., Barcikowski M., Hajdukiewicz G. (2020), The influence of manufacturing technology on the properties of layered composites with polyester–glass recyclate additive, Progress in Rubber, Plastics and Recycling Technology, 36(1): 18–30, doi: 10.1177/1477760619895003.
12. Marec A., Thomas J., Guerjouma R.E. (2008), Damage characterization of polymer-based composite materials: Multivariable analysis and wavelet transform for clustering acoustic emission data, Mechanical Systems and Signal Processing, 22(6): 1441–1448, doi: 10.1016/j.ymssp.2007.11.029.
13. McCrory J.P. et al. (2005), Damage classification in carbon fibre composites using acoustic emission: A comparison of three techniques, Composites: Part B, 68: 424–430, doi: 10.1016/j.compositesb.2014.08.046.
14. Mohammadi R., Najafabadi M.A., Saeedifar M., Yousefi J., Minak G. (2017), Correlation of acoustic emission with finite element predicted damages in open-hole tensile laminated composites, Composites Part B: Engineering, 118: 427–435, doi: 10.1016/j.compositesb.2016.09.101.
15. Monti A., El Mahi A., Jendli Z., Guillaumat L. (2016), Mechanical behaviour and damage mechanisms analysis of a flax-fibre reinforced composite by acoustic emission, Composites Part A: Applied Science and Manufacturing, 90: 100–110, doi: 10.1016/j.compositesa.2016.07.002.
16. Nikbakht M., Yousefi J., Hosseini-Toudeshky H., Minak G. (2017), Delamination evaluation of composite laminates with different interface fiber orientations using acoustic emission features and micro visualization, Composites Part B: Engineering, 113: 185–196, doi: 10.1016/j.compositesb.2016.11.047.
17. Panasiuk K., Hajdukiewicz G. (2017), Production of composites with added waste polyester-glass with their initial mechanical properties, Scientific Journals of the Maritime University of Szczecin, 52(124): 30–36, doi: 10.17402/242.
18. Panasiuk K., Kyzioł L., Dudzik K. (2019), The use of acoustic emission signal (AE) in mechanical tests, Przeglad Elektrotechniczny, 95(11): 8–11, doi: 10.15199/48.2019.11.03.
19. PN-EN ISO 527-4:2000, Plastics – Determination of mechanical properties under static stretching – Test conditions for isotropic and orthotropic fiber-reinforced plastic composites.
20. PN-EN 1330-9:2017-09, Non-destructive testing – Terminology – Part 9: Terms used in acoustic emission testing.
21. PN-EN 13554: 2011E, Non-destructive testing – Acoustic emission – General rules. 22. PN-EN 15857: 2010E, Non-destructive testing – Acoustic emission – Testing of fiber-reinforced polymers – Specified methodology and general evaluation criteria.
23. Ranachowski Z., Józwiak-Niedzwiedzka D., Brandt A., Debowski T. (2012), Application of acoustic emission method to determine critical stress in fibre reinforced mortar beams, Archives of Acoustics, 37(3): 261–268, doi: 10.2478/v10168-012-0034-3.
24. Saeedifar M., Fotouhi M., Ahmadi Najafabadi M., Hosseini Toudeshky H., Minak G. (2016), Prediction of quasi-static delamination onset and growth in laminated composites by acoustic emission, Composites Part B: Engineering, 85: 113–122, doi: 10.1016/j.compositesb.2015.09.037.
25. Shafiq B., Quispitupa A., Just F., Banos M. (2005), Sandwich Structures 7: Advancing with Sandwich Structures and Materials: Proceedings of the 7th International Conference on Sandwich Structures, Aalborg University, Aalborg, Denmark, August 29– 31, 2005, Springer Science & Business Media, doi: 10.1007/1-4020-3848-8.
26. Xiao Y., Qiao W., Fukuda H., Hatta H. (2016), The effect of embedded devices on structural integrity of composite laminates, Composite Structures, 153: 21–29, doi: 10.1016/j.compstruct.2016.06.007.
27. Xingmin Z., Xiong Y.I. (2006), Investigation of damage mechanisms in self-reinforced polyethylene composites by acoustic emission, Composite Science and Technology, 66(3–4): 444–449, doi: 10.1016/j.compsci tech.2005.07.013.
28. Yu Y.-H., Cho J.-H., Kweon J.-H., Kim D.-H. (2006), A study on the failure detection of composite materials using an acoustic emission, Composite Structures, 75(1–4): 163–169, doi: 10.1016/j.compstruct.2006.04.070.
29. Zaki A., Chai H., Aggelis D., Alver N. (2015), Non-destructive evaluation for corrosion monitoring in concrete: a review and capability of acoustic emission technique, Sensors, 15(8): 19069–19101, doi: 10.3390/s150819069.
30. Zakłady Chemiczne „Organika Sarzyna” S.A., http://www.krisko.lublin.pl/chemia/zywice-poliestrowepolimal/konstrukcyjne-ogolnego-stosowania-polimal-1094-awtp-1/polimal-1094-awtp-1/polimal-1094-awtp-1-a-5-kg-1.html (access: 20.07.2020).
Go to article

Authors and Affiliations

Katarzyna Panasiuk
1
Krzysztof Dudzik
2
Grzegorz Hajdukiewicz
1

  1. Gdynia Maritime University, Faculty of Marine Engineering, Department of Engineering Sciences, Gdynia, Poland
  2. Gdynia Maritime University, Faculty of Marine Engineering, Marine Maintenance Department, Gdynia, Poland
Download PDF Download RIS Download Bibtex

Abstract

The coronavirus disease 2019 (COVID-19) pandemic has wreaked havoc especially in 2020 and the first half of 2021 and has left severe after-effects affecting not only the health sector but also all aspects of human life. The aim of this study is to inspect the current trends of the quantities of household waste produced during the first four waves of the pandemic. The study was carried out in Guelma city, northeastern of Algeria, where the first containment was registered on February 25, 2020, it concerns an Italian national (Mohamed et al. 2021). An increase in the production of household waste of approximately 14% during the first containment was recorded in the study area, with the interruption of recycling, which caused an enormous pressure on the technical landfill center of Guelma. The results showed that the trend of waste production decreased at the following averages: 205.80; 198.92; 196.69 and 192.43 tons, for the first four waves of COVID-19 respectively. Therefore, a return to the pre-pandemic state would be close, which dampens the impact and pressure on the landfill and the environment. This research allows for perceiving the waste management status in Algeria, between the pandemic and post-pandemic period.
Go to article

Bibliography

  1. Acter, T., Uddin, N., Das, J., Akhter, A., Choudhury, T.R. & Kim, S. (2020). Evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as coronavirus disease 2019 (COVID-19) pandemic: A global health emergency. Science of The Total Environment, 730, 138996. DOI:10.1016/j. scitotenv.2020.138996
  2. Adyel, T.M. (2020). Accumulation of plastic waste during COVID-19. Science, 369(6509), pp. 1314–1315. DOI:10.1126/science. abd9925
  3. AND (2020). Report on the State of Waste Management in Algeria https://and.dz/site/wp-content/uploads/rapport%20DMA2.pdf (Assessed 03 july 2022).
  4. Anderson, R.M., Heesterbeek, H., Klinkenberg, D. & Hollingsworth, T.D. (2020). How will country-based mitigation measures influence the course of the COVID-19 epidemic? The Lancet, 395(10228), pp. 931–934. DOI:10.1016/S0140-6736(20)30567-5
  5. Andi (2020). National Agency for the Development of Investments (Andi). The borough of Guelma. Volumes 1–19. Presentation of the wilaya (borough) 2015. Assessed on Sep 09, 2020. http:// www.andi.dz/PDF/monographies/Guelma.pdf. Journal of Environmental Engineering.
  6. Aouissi, H.A., Kechebar, M.S.A., Ababsa, M., Roufayel, R., Neji, B., Petrisor, A.-I. Ohmagari, N. (2022). The Importance of Behavioral and Native Factors on COVID-19 Infection and Severity: Insights from a Preliminary Cross-Sectional Study. Healthcare, 10(7), 1341. DOI:10.3390/healthcare10071341
  7. Boroujeni, M., Saberian, M. & Li, J. (2021). Environmental impacts of COVID-19 on Victoria, Australia, witnessed two waves of Coronavirus. Environmental Science and Pollution Research, 28(11), pp. 14182–14191. DOI:10.1007/s11356-021-12556-y
  8. Chen, D.M.-C., Bodirsky, B.L., Krueger, T., Mishra, A. & Popp, A. (2020). The world’s growing municipal solid waste: trends and impacts. Environmental Research Letters, 15(7), 074021. DOI:10.1088/1748-9326/ab8659
  9. Chen, Q., Liang, M., Li, Y., Guo, J., Fei, D., Wang, L.& Li, X. (2020). Mental health care for medical staff in China during the COVID-19 outbreak. The Lancet Psychiatry, 7(4), e15-e16. DOI:10.1016/ S2215-0366(20)30078-X
  10. Chen, W., Zhang, N., Wei, J., Yen, H.-L. & Li, Y. (2020). Short- -range airborne route dominates exposure of respiratory infection during close contact. Building and Environment, 176, 106859. DOI:10.1101/2020.03.16.20037291
  11. Contributors, V. (2021). Economic Crisis and Mentality of Youth in Post-Pandemic Period edited by Sagar Simlandy: PS Opus Publications.
  12. DGPPS, M. (2020). Plan de préparation et de riposte à la menace de l’infection coronavirus Covid-19. Disponible sur: http://www. sante. gov. dz/images/Prevention/cornavirus/Plan-de-prparation. PDF.
  13. Ebner, N. & Iacovidou, E. (2021). The challenges of Covid-19 pandemic on improving plastic waste recycling rates. Sustainable Production and Consumption, 28, pp. 726–735. DOI:10.1016/j. spc.2021.07.001
  14. Ghennam, N. (2020). Waste Recycling Business in Algeria – Opportunities and Challenges for SME. Al-Riyada Bus. Econ. J., 6, pp. 10–22.
  15. Hyun, M. (2020). Korea sees steep rise in online shopping during COVID-19 pandemic. ZD Net. Assessed on April 12, 2020. https://www.zdnet.com/article/justice-department-seizes-fakecovid- 19-vaccine-website-stealing-info-from-visitors/
  16. Iyer, M., Tiwari, S., Renu, K., Pasha, M. Y., Pandit, S., Singh, B. & Balasubramanian, V. (2021). Environmental survival of SARSCoV- 2 – a solid waste perspective. Environmental Research, 197, 111015. DOI:10.1016/j.envres.2021.111015
  17. Jribi, S., Ben Ismail, H., Doggui, D. & Debbabi, H. (2020). COVID-19 virus outbreak lockdown: What impacts on household food wastage? Environment, Development and Sustainability, 22(5). DOI:10668-020-00740-y
  18. Kampf, G., Todt, D., Pfaender, S. & Steinmann, E. (2020). Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. Journal of Hospital Infection, 104(3), pp. 246–251. DOI:10.1016/j.jhin.2020.01.022
  19. Kandel, N., Chungong, S., Omaar, A. & Xing, J. (2020). Health security capacities in the context of COVID-19 outbreak: an analysis of International Health Regulations annual report data from 182 countries. The Lancet, 395(10229), pp. 1047–1053. DOI:10.1016/S0140-6736(20)30553-5
  20. Kebaili, F. K., Baziz-Berkani, A., Aouissi, H.A., Mihai, F.-C., Houda, M., Ababsa, M. & Fürst, C. (2022). Characterization and Planning of Household Waste Management: A Case Study from the MENA Region. Sustainability, 14(9), 5461. DOI:10.3390/su14095461
  21. Klemeš, J.J., Van Fan, Y., Tan, R.R. & Jiang, P. (2020). Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19. Renewable and Sustainable Energy Reviews, 127, 109883. DOI:10.1016/j.rser.2020.109883
  22. Leveau, C.M., Aouissi, H.A. & Kebaili, F.K. (2022). Spatial diffusion of COVID-19 in Algeria during the third wave. GeoJournal, 1–6. DOI:10.1007/s10708-022-10608-5
  23. Lounis, M., Rais, M.A., Bencherit, D., Aouissi, H.A., Oudjedi, A., Klugarová, J. & Riad, A. (2022). Side Effects of COVID-19 Inactivated Virus vs. Adenoviral Vector Vaccines: Experience of Algerian Healthcare Workers. Frontiers in Public Health, 10, 896343-896343. DOI:10.3389/fpubh.2022.896343
  24. Low, D., & Koh, A. (2020). Singapore’s Food Delivery Surge during Lockdown Highlights Waste Problems. Bloomberg News, (Accessed 18 July2020).
  25. Mohamed, K., Amina, M.-S., Mouaz, M.B.E., Zihad, B. & Wafa, R. (2021). The impact of the coronavirus pandemic on the household waste flow during the containment period. Environmental Analysis Health and Toxicology, 36(2), e2021011. DOI:10.5620/ eaht.2021011
  26. Mol, M.P.G. & Caldas, S. (2020). Can the human coronavirus epidemic also spread through solid waste? Waste Management & Research, 38(5), pp. 485–486. DOI:10.1177/0734242X20918312
  27. Nzediegwu, C. & Chang, S. (2020). Developing Countries For Submission to: Resources Conservation y Recycling Type of Paper: Perspective. Resources, Conservation. Recycling, 104947.
  28. Paleologos, E.K., Elhakeem, M. & Amrousi, M.E. (2018). Bayesian analysis of air emission violations from waste incineration and coincineration plants. Risk Analysis, 38(11), pp. 2368–2378. DOI:10.1111/risa.13130
  29. Ranney, M.L., Griffeth, V. & Jha, A.K. (2020). Critical supply shortages – the need for ventilators and personal protective equipment during the Covid-19 pandemic. New England Journal of Medicine, 382(18), e41. DOI:10.1056/NEJMp2006141
  30. Remuzzi, A. & Remuzzi, G. (2020). COVID-19 and Italy: what next? The Lancet, 395(10231), pp. 1225–1228. DOI:10.1016/S0140- 6736(20)30627-9
  31. Roy, P., Mohanty, A.K., Wagner, A., Sharif, S., Khalil, H., & Misra, M. (2021). Impacts of COVID-19 outbreak on the municipal solid waste management: Now and beyond the pandemic. ACS Environmental Au, 1(1), pp. 32–45. DOI:10.1021/ acsenvironau.1c00005
  32. SNGID. (2019). National Waste Management Strategy https://www. nascrc.com/wp-content/uploads/2019/11/la-strat%C3%A9gienationale- pour-la-gestion- int%C3%A9gr%C3%A9e-desd% C3%A9chets-SNGID-2035-cas-des-POPs.pdf (accessed on 15 June 202)
  33. Van Fan, Y., Jiang, P., Hemzal, M. & Klemeš, J.J. (2021). An update of COVID-19 influence on waste management. Science of the Total Environment, 754, 142014. DOI:10.1016/j. scitotenv.2020.142014
  34. Vaverková, M.D., Paleologos, E.K., Dominijanni, A., Koda, E., Tang, C.S., Wdowska, M., Li, Q., Guarena, N., Abdel- Mohsen, O.M., Vieira, C.S., Manassero, M., O’Kelly, B.C., Xie, Q., Bo, MV., Adamcová, D.,. Podlasek, A., Anand, U.M., Arif, M., Venkata Siva Naga Sai Goli, Kuntikana, G., Palmeira, E.M., Pathak, S. & Singh, D.N. (2020). Municipal solid waste management under COVID-19: challenges and recommendations. Environmental Geotechnics, 8(3), pp. 217–232. DOI:10.1680/jenge.20.00082
  35. WHO (2020). COVID-19 2020 situation summary – updated 19 April 2020. Available at. https://www.cdc.gov/coronavirus/2019-ncov/ cases-updates/summary. html#covid19-pandemic (Accessed 20 june 2021 ).
  36. WHO (2022). The COVID-19 weekly epidemiological Update – updated 12 October 2022. Available. https://www.who.int/ publications/m/item/weekly-epidemiological-update-on-covid- 19-12-october-2022 (Accessed 18 /10/ 2022).
  37. World Health Organization. Worldmeter (2015). Worldmeter 2015. Available online: https:// www.worldometers.info/population/largest-cities-in-the-world/ (accessed on 12 March 2022).
  38. Yang, Y., Li, W., Zhang, Q., Zhang, L., Cheung, T. & Xiang, Y.-T. (2020). Mental health services for older adults in China during the COVID-19 outbreak. The Lancet Psychiatry, 7(4), e19. DOI:10.1016/S2215-0366 (20)30079-1
  39. Zandifar, A. & Badrfam, R. (2020). Iranian mental health during the COVID-19 epidemic. Asian Journal of Psychiatry, 51. DOI:10.1016/j.ajp.2020.101
Go to article

Authors and Affiliations

Amina Mesbahi-Salhi
1
Mohamed Kaizouri
1
Bachir El Mouaz Madoui
1
Wafa Rezaiguia
2
ORCID: ORCID
Zihad Bouslama
1
ORCID: ORCID

  1. Laboratory of Ecology of Earth and Aquatic Systems, University of Badji Mokhtar,Annaba, 23052, Algeria
  2. University of Mohamed Cherif Messaadia, Souk-Ahras, 41043, Algeria
Download PDF Download RIS Download Bibtex

Abstract

Ferrotitanium can be produced as a method of recycling Ti scraps. The eutectic composition of ferrotitanium, Fe29.5Ti70.5, can be obtained as a nanocrystalline phase due to relatively low melting point. Fe29.5Ti70.5 in which FeTi and β-Ti form a lamellar structure have high strength but low strain. To improve this, impurities were removed through hydrogen plasma arc melting (HPAM) and annealed. HPAM can remove substitutional/interstitial solid solutions. As a result, from 6733 ppm to 4573 ppm of initial impurities were removed by HPAM process. In addition, the strain was improved by spheroidizing and coarsening the lamellar structure through annealing. The effect of impurities removed through HPAM on the Young’s modulus, yield strength, and strain was observed.
Go to article

Bibliography

[1] J.M. Park, D.H. Kim, K.B. Kim, N. Mattern, J. Eckert, J. Mater. Res. 26, 365 (2011).
[2] M. Dao, L. Lu, R. Asaro, J.T. M. De Hosson, E. Ma, Acta Mater. 55, 4041 (2007).
[3] K . Bensadok, S. Benammar, F. Lapicque, G. Nezzal, J. Hazard. Mater. 152, 423 (2008).
[4] J. Chae, J.-M. Oh, S. Yoo, J.-W. Lim, Korean J. Met. Mater. 57, 569 (2019).
[5] J.-M. Oh, K.-M. Roh, J.-W. Lim, J. Hydrog. Energy 41, 23033 (2016).
[6] J.-M. Oh, B.-K. Lee, C.-Y. Suh, J.-W. Lim, J. Alloy. Compd. 574, 1 (2013).
[7] J.-W. Lim, G.-S. Choi, K. Mimura, M. Isshiki, Met. Mater. Int. 14, 539 (2008).
[8] K . Mimura, S.-W. Lee, M. Ishiki, J. Alloy. Compd. 211, 267 (1995).
[9] M.W. Chase Jr, W. Malcom, NIST-JANAF Thermochemical Table, 4th ed, J. Phys. Chem. Ref. Deta, Mohograph 9, 154, 1537, 1759, 1776 (1995).
[10] J. Das, K. Kim, F. Baier, W. Lӧser, J. Eckert, Appl. Phys. Lett. 87, 161907 (2005).
Go to article

Authors and Affiliations

Suhwan Yoo
1
Jung-Min Oh
1
Jaeyeol Yang
2
Jaesik Yoon
2
Jae-Won Lim
1

  1. Jeonbuk National University, Division of Advanced Materials Engineering, College of Engineering, Jeonju 54896, Republic of Korea
  2. Korea Basic Science Institute, Division of Earth and Environmental Science, Cheongju 28119, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

Many researchers in the developed countries have been intensively seeking effective methods of plastic recycling over the past years. Those techniques are necessary to protect our natural environment and save non-renewable resources. This paper presents the concept of an electrostatic separator designed as a test bench dedicated to the separation of mixed plastic waste from the automotive industry. According to the current policy of the European Union on the recycling process of the automotive industry, all these waste materials must be recycled further for re-entering into the life cycle (according to the circular economy). In this paper, the proposed concept and design of the test bench were offered the feasibility to conduct research and technological tests of the electrostatic separation process of mixed plastics. The designed test bench facilitated assessing the impact of positions of high-voltage electrodes, the value and polarity of the high voltage, the variable speed of feeders and drums, and also triboelectrification parameters (like time and intensity) on the process, among others. A specialized computer vision system has been proposed and developed to enable quick and reliable evaluation of the impact of process parameters on the efficiency of electrostatic separation. The preliminary results of the conducted tests indicated that the proposed innovative design of the research stand ensures high research potential, thanks to the high accuracy of mixed plastics in a short time. The results showed the significant impact of the corona electrode position and the value of the applied voltage on the separation process effectiveness. It can be concluded that the results confirmed the ability to determine optimally the values of the studied parameters, in terms of plastic separation effectiveness. This study showed that this concept of an electrostatic separator designed as a test bench dedicated for separation of mixed plastic waste can be widely applied in the recycling plastic industry.
Go to article

Bibliography

  1.  J. Flizikowski and M. Macko, “Competitive design of shredder for plastic in recycling”, Tools And Methods Of Competitive Engineering 1(2), 1147–1148 (2004).
  2.  M. Macko, K. Tyszczuk, G. Śmigielski, J. Flizikowski, and A. Mroziński, “The use of CAD applications in the design of shredders for polymers”, MATEC Web of Conferences 157, 02027 (2018), doi: 10.1051/matecconf/201815702027.
  3.  D. Czarnecka-Komorowska and K. Wiszumirska, “Sustainability design of plastic packaging for the Circular Economy”, Polimery 65(1), 8–17 (2020), doi: 10.14314/polimery.2020.1.2.
  4.  D. Czarnecka-Komorowska, K. Wiszumirska, and T. Garbacz, “Films LDPE/LLDPE made from post–consumer plastics: processing, structure, mechanical properties”, Adv. Sci. Technol. Res. J. 12(3), 134–142 (2018).
  5.  Directive 2000/53/EC of the European Parliament and of the Council of 18 September 2000 on end-of life vehicles – Commission Statements, 2020.
  6.  End-of-life vehicle statistics – Eurostat. [Online] https://ec.europa.eu/eurostat/statistics-explained/index.php?title=End-of-life_vehicle_ statistics (accessed Feb. 26, 2020).
  7.  M. Macko, Z. Szczepanski, E. Mikolajewska, J. Nowak, and D. Mikolajewski, “Repository of 3D images for education and everyday clinical practice purposes”, Bio-Algorithms Med-Syst. 13(2), 111–116 (2017).
  8.  J. Kopowski, I. Rojek, D. Mikołajewski, and M. Macko, “3D printed hand exoskeleton-own concept”, in Advances in manufacturing II, pp. 298–306, Springer, 2019.
  9.  G. Dodbiba and T. Fujita, “Progress in separating plastic materials for recycling”, Phys. Sep. Sci. Eng. 13(3–4), 165–182 (2004).
  10.  P. Krawiec, L. Różański, D. Czarnecka-Komorowska, and Ł. Warguła, “Evaluation of the thermal stability and surface characteristics of thermoplastic polyurethane V-Belt”, Materials 13(7), 1502 (2020).
  11.  S.A. Pradeep, R.K. Iyer, H. Kazan, and S. Pilla, “Automotive applications of plastics: past, present, and future”, in Applied Plastics Engineering Handbook, 651–673, Elsevier, 2017.
  12.  X. Yang, X. Liu, L. Song, C. Y. Lv, and X. Cheng, “Study on the separators for plastic wastes processing”, Procedia Eng. 174, 497–503 (2017).
  13.  S. Serranti and G. Bonifazi, “Techniques for separation of plastic wastes”, in Use of Recycled Plastics in Eco-efficient Concrete, pp. 9–37, Elsevier, 2019.
  14.  K.C. Lai, S.K. Lim, P.C. Teh, and K.H. Yeap, “An artificial neural network approach to predicting electrostatic separation performance for food waste recovery”, Pol. J. Environ. Stud. 26(4), 1921–1926 (2017), doi: 10.15244/pjoes/68963.
  15.  J. Wang, M. de Wit, R. M. Boom, and M.A.I. Schutyser, “Charging and separation behavior of gluten–starch mixtures assessed with a custom-built electrostatic separator”, Sep. Purif. Technol. 152, 164–171 (2015), doi: 10.1016/j.seppur.2015.08.025.
  16.  S. Tabtabaei, D. Konakbayeva, A. R. Rajabzadeh, and R.L. Legge, “Functional properties of navy bean (Phaseolus vulgaris) protein concentrates obtained by pneumatic tribo-electrostatic separation”, Food Chem. 283, 101–110 (2019), doi: 10.1016/j.foodchem.2019.01.031.
  17.  J. Wang, J. Zhao, M. de Wit, R.M. Boom, and M.A.I. Schutyser, “Lupine protein enrichment by milling and electrostatic separation”, Innovative Food Sci. Emerg. Technol. 33, 596–602 (2016), doi: 10.1016/j.ifset.2015.12.020.
  18.  A. Iuga, L. Calin, V. Neamtu, A. Mihalcioiu, and L. Dascalescu, “Tribocharging of plastics granulates in a fluidized bed device”, J. Electrostat. 63(6), 937–942 (2005), doi: 10.1016/j.elstat.2005.03.064.
  19.  L. Calin et al., “Tribocharging of Granular Plastic Mixtures in View of Electrostatic Separation”, IEEE Trans. Ind. Appl. 44(4), 1045–1051 (2008), doi: 10.1109/TIA.2008.926689.
  20.  M. Żenkiewicz, T. Żuk, and J. Pietraszek, “Modeling electrostatic separation of mixtures of poly(ε-caprolactone) with poly(vinyl chloride) or poly(ethylene terephthalate)”, Przem. Chem. 95(9), 1687–1692 (2016), doi: 10.15199/62.2016.9.6.
  21.  A. Cieśla, M. Skowron, and P. Syrek, “Elektryzacja ziaren węgla metodą tryboelektryczną”, Przegląd Elektrotechniczny, 1(1), 129–132 (2017), doi: 10.15199/48.2017.01.31.
  22.  H. Lu, J. Li, J. Guo, and Z. Xu, “Movement behavior in electrostatic separation: Recycling of metal materials from waste printed circuit board”, J. Mater. Process. Technol. 197(1), 101–108 (2008), doi: 10.1016/j.jmatprotec.2007.06.004.
  23.  T. Dziubak, “Experimental research on separation efficiency of aerosol particles in vortex tube separators with electric field”, Bull. Pol. Acad. Sci. Tech. Sci. 68(3), 503–516 (2020).
  24.  L. Dascalescu et al., “Factors that influence the efficiency of a fluidized-bed-type tribo-electrostatic separator for mixed granular plastics”, J. Phys. Conf. Ser. 301, 012066 (2011), doi: 10.1088/1742-6596/301/1/012066.
  25.  A. Cieśla, W. Kraszewski, M. Skowron, A. Surowiak, and P. Syrek, “Application of electrodynamic drum separator to electronic wastes separation”, Min. Res. Manag. 32(1), 155–174 (2016), doi: 10.1515/gospo-2016-0007.
  26.  H.M. Veit, T.R. Diehl, A.P. Salami, J.S. Rodrigues, A.M. Bernardes, and J. A. S. Tenório, “Utilization of magnetic and electrostatic separation in the recycling of printed circuit boards scrap”, Waste Manage. 25(1), 67–74 (2005), doi: 10.1016/j.wasman.2004.09.009.
  27.  U. Śliwa and M. Skowron, “Analysis of the electric field distribution in the drum separator of different electrode configuration”, IAPGOS, 6, 79–82 (2016).
  28.  L. Dascalescu, T. Zeghloul, and A. Iuga, “Chapter 4 – Electrostatic separation of metals and plastics from waste electrical and electronic equipment”, in WEEE Recycling, 75–106, 2016.
  29.  G. Bedeković, B. Salopek, and I. Sobota, “Electrostatic separation of PET/PVC mixture”, Tech. Gaz. 18(2), 261–266 (2011).
  30.  L. Calin, A. Mihalcioiu, A. Iuga, and L. Dascalescu, “Fluidized bed device for plastic granules triboelectrification”, Part. Sci. Technol. 25(2), 205–211 (2007), doi: 10.1080/02726350701257782.
  31.  T. Zeghloul, A. Mekhalef Benhafssa, G. Richard, K. Medles, and L. Dascalescu, “Effect of particle size on the tribo-aero-electrostatic separation of plastics”, J. Electrostat. 88, 24–28 (2017), doi: 10.1016/j.elstat.2016.12.003.
  32.  M. Mirkowska, M. Kratzer, C. Teichert, and H. Flachberger, “Principal factors of contact charging of minerals for a successful triboelectrostatic separation process – a review”, Berg Huettenmaenn Monatsh 161(8), 359–382 (2016), doi: 10.1007/s00501-016-0515-1.
  33.  M. Dötterl et al., “Electrostatic Separation”, in Ullmann’s Encyclopedia of Industrial Chemistry, pp. 1–35, Wiley-VCH Verlag GmbH & Co. KGaA, 2016, doi: 10.1002/14356007.b02_20.pub2.
  34.  M. Lungu, “Electrical separation of plastic materials using the triboelectric effect”, Miner. Eng. 17(1), 69–75 (2004).
  35.  A. Benabderrahmane, K. Medles, T. Zeghloul, P. Renoux, L. Dascalescu, and A. Parenty, “Triboelectrostatic separation of brominated f lame retardants polymers from mixed granular wastes”, in 2019 IEEE Industry Applications Society Annual Meeting, Baltimore, USA, 2019, pp. 1–4, doi: 10.1109/IAS.2019.8912375.
  36.  M. Żenkiewicz and T. Żuk, “Physical basis of tribocharging and electrostatic separation of plastics”, Polimery 59(4), 314–323 (2014), doi: 10.14314/polimery.2014.314.
  37.  Y. Wu, G.S.P. Castle, and I.I. Inculet, “Induction charging of granular materials in an electric field”, in Conference Record of the 2004 IEEE Industry Applications Conference. 39th IAS Annual Meeting, 2004, pp. 2366‒2372 vol. 4, doi: 10.1109/IAS.2004.1348806.
  38.  F. Portoghese, F. Berruti, and C. Briens, “Continuous on-line measurement of solid moisture content during fluidized bed drying using triboelectric probes”, Powder Technol. 181(2), 169–177 (2008), doi: 10.1016/j.powtec.2007.01.003.
  39.  J.-K. Lee, J.-H. Shin, and Y.-J. Hwang, “Triboelectrostatic separation system for separation of PVC and PS materials using fluidized bed tribocharger”, KSME Inter. J. 16(10), 1336–1345 (2002), doi: 10.1007/BF02983841.
  40.  L. Dascalescu et al., “Charges and forces on conductive particles in roll-type corona-electrostatic separators”, IEEE Trans. Ind. Appl. 31(5), 947–956, (1995), doi: 10.1109/28.464503.
  41.  Y.E. Prawatya, M.B. Neagoe, T. Zeghloul, and L. Dascalescu, “Surface-electric-potential characteristics of tribo- and corona-charged polymers: a comparative study”, IEEE Trans. Ind. Appl. 53(3), 2423–2431 (2017), doi: 10.1109/TIA.2017.2650145.
  42.  Y. Prawatya, B. Neagoe, T. Zeghloul, and L. Dascalescu, “Comparison between the surface-electric-potential characteristics of tribo- and corona- charged polymers”, in 2015 IEEE Industry Applications Society Annual Meeting, 2015, pp. 1–5, doi: 10.1109/IAS.2015.7356756.
  43.  M. Maammar, W. Aksa, M. F. Boukhoulda, S. Touhami, L. Dascalescu, and T. Zeghloul, “Modeling and simulation of nonconductive particles trajectories in a multifunctional electrostatic separator”, IEEE Trans. on Ind. Applicat. 55(5), 5244–5252 (2019), doi: 10.1109/ TIA.2019.2920805.
  44.  K. Flynn, A. Gupta, and F. Hrach, “Electrostatic Separation of Dry Granular Plant Based Food Materials – ST Equipment & Technology (STET)”, 2017. [Online]. Available: https://steqtech.com/electrostatic-separation-dry-granular-plant-based-food-materials/.
  45.  D. Czarnecka-Komorowska, K. Grześkowiak, P. Popielarski, M. Barczewski, K. Gawdzińska, and M. Popławski, “Polyethylene wax modified by organoclay bentonite used in the lost-wax casting process: processing-structure property relationships”, Materials 13(10), 2255 (2020).
  46.  Ł. Knypiński, “Optimal design of the rotor geometry of line-start permanent magnet synchronous motor using the bat algorithm”, Open Phys. 15(1), 965–970 (2017).
  47.  Ł. Knypiński, K. Pawełoszek, and Y. Le Menach, “Optimization of low-power line-start PM motor using gray wolf metaheuristic algorithm”, Energies 13(5), 1186 (2020), doi: 10.3390/en13051186.
  48.  I. Rojek and E. Dostatni, “Machine learning methods for optimal compatibility of materials in ecodesign”, Bull. Pol. Acad. Sci. Tech. Sci. 68(2), 199–206 (2020).
Go to article

Authors and Affiliations

Roman Regulski
1
ORCID: ORCID
Dorota Czarnecka-Komorowska
2
ORCID: ORCID
Cezary Jędryczka
3
ORCID: ORCID
Dariusz Sędziak
1
ORCID: ORCID
Dominik Rybarczyk
1
ORCID: ORCID
Krzysztof Netter
1
ORCID: ORCID
Mariusz Barański
3
ORCID: ORCID
Mateusz Barczewski
2
ORCID: ORCID

  1. Institute of Mechanical Technology, Poznan University of Technology, 60-965 Poznań, Poland
  2. Institute of Materials Technology, Poznan University of Technology, 60-965 Poznań, Poland
  3. Institute of Electrical Engineering and Electronics, Poznan University of Technology, 60-965 Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

This study investigates the effects of repetitive injection molding on the properties of feedstock using the AISI 4140 feedstock. The properties of feedstock are evaluated from the mixing homogeneity of powder and binder, rheological properties, and dimensional accuracy of parts sintered. The feedstock after the 1st injection molding shows a better homogeneity than as-received feedstock due to re-mixing effects between the screw and barrel during the injection molding process. As the number of recycling numbers increases, the homogeneity, viscosities ad shrinkage ratio of recycled feedstocks show slight differences with those of the as-received feedstock until the 6th molding injection. However, some rheological parameters like the moldability index sharply increased up to the 4th injection but shows a tendency to decrease thereafter.
Go to article

Authors and Affiliations

Jin Man Jang
1 2
ORCID: ORCID

  1. Korea Institute of Industrial Technology, Incheon, 21999, Republic of Korea
  2. Inha University, Department of Materials Science and Engineering, Incheon, 22212, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the kinetics of the platinum(IV) chloride complex ions reduction reaction was studied. It was shown that the mechanism exhibits autocatalytic character. The presence of metallic platinum in the system significantly increases the reaction rate. The influence of the initial concentration of precursor, reductant, ionic strength, initial concentration of the chloride ions as well as the temperature on the process rate was investigated. The activation energy was determined and is equal to 93.57 kJ/mol. Moreover, the obtained metallic phase was analyzed, and it was observed that it has a micrometric size.

Go to article

Authors and Affiliations

M. Wojnicki
P. Żabiński
ORCID: ORCID
Edit Csapó
Download PDF Download RIS Download Bibtex

Abstract

The aim of the paper was to analyse the possibility to use waste material which is created during the production of mineral-asphalt mixes as a side effect of the process of drying and dedusting diabase aggregate in high temperature. Experimental studies included the analysis of the influence of the addition of diabase dust on the improvement of the properties of cement concrete destined for the construction of local roads. The mineral additive in the form of diabase dust, which constitutes natural waste, was inserted into the concrete mix as a mineral additive substituting a part of the aggregate with the constant amount of cement and water, and additionally as the substitute for cement. The performed studies resulted in the conclusion that adding diabase dust significantly increased the tightness and density of concrete, which impacts the increase of compressive strength by 7, 21 and 28% in reference to model concrete. The insertion of the waste diabase dust into the concrete mix significantly improved the freeze-thaw resistance of concrete after 150 cycles of testing and reduced the water absorption by 6, 15 and 21%. Using diabase dust as a substitute in the following amount: 50, 100 and 150 kg/m3 did not cause significant changes in the scope of density and water absorption, whereas the reduction of the compressive strength was from 8, 23 and 33% in reference to the model concrete. The application of dust as the substitute for cement resulted in the reduction of the costs of concrete by 6, 12 and 18% and resulted in the possibility to fully apply waste material, which confirms the justness of undertaking implementation research. Concrete with the use of waste rock dusts may be qualified as concrete that is environmentally friendly and compliant with the sustainable development of modern construction materials.
Go to article

Authors and Affiliations

Tomasz Rudnicki
1
ORCID: ORCID
Robert Jurczak
2
ORCID: ORCID

  1. Faculty of Civil Engineering and Geodesy, Military University of Technology in Warsaw, ul. Gen. S. Kaliskiego 2, 01-476 Warsaw, Poland
  2. Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology in Szczecin, al. Piastów 50a, 70-311 Szczecin, Poland
Download PDF Download RIS Download Bibtex

Abstract

The growing increase in the use of cars and transportation in general is causing an increase the emission of pollutants into the atmosphere. The current European Union regulations impose the minimization of pollution through the use of automotive catalytic converters on all member countries, which stops toxic compounds from being emitted into the atmosphere thanks to their contents of platinum group metals (PGMs). However, the growing demand for cars and the simultaneous demand for catalytic converters is contributing to the depletion of the primary sources of PGMs. This is why there is now increasing interest in recycling PGMs from catalytic converters through constantly developing technologies. There are newer and more sustainable solutions for the recovery of PGMs from catalytic converters, making the process part of a circular economy (CE) model. The purpose of this article is to present two innovative methods of PGM recovery in the framework of ongoing research and development projects.
Go to article

Authors and Affiliations

Natalia Generowicz
1
ORCID: ORCID
Agnieszka Nowaczek
1
ORCID: ORCID
Leszek Jurkowski
2
Iakovos Yakoumis
3

  1. Mineral and Energy Economy Research Institute Polish Academy of Sciences, Kraków, Poland
  2. Unimetal Recycling sp. z o.o., Trzebinia, Poland
  3. MONOLITHOS Catalysts and Recycling Ltd, Athens, Greece
Download PDF Download RIS Download Bibtex

Abstract

The lithium market has experienced an unprecedented boom in recent years like a “golden age” and is one of the fastest growing raw material markets in the world. The fast growing demand for lithium is mainly related to the increase in the production of lithium-ion batteries used in electric or hybrid vehicles and portable electronic equipment, and to a lesser extent, in other strategic fields (military, nuclear technologies). This was reflected in a significant change in the structure of consumption, an increase in international trade and in the price of lithium raw materials. Moreover, in 2018 lithium was listed as a critical element for the national security and economy of the United States, and in 2020 it was also listed as a critical raw material for the European Union economy. It is also a time of increased exploration for new deposits, as well as mining processing and recycling. As a result, global lithium reserves have doubled in the last six years. All this prompted the authors to prepare an article in which the sources of lithium minerals and their resources, the basic factors determining the economic situation on the market, their prices and the possibilities of recycling and substitution are presented and assessed. Attention is also paid to the role of companies operating in Poland as significant partners on the European market of lithium-ion batteries. Lithium oxide and hydroxide and lithium carbonate are the main lithium raw materials used in Poland. In the absence of the country having its own deposits, they are imported, and the main suppliers are Chile, Western European countries and Russia.
Go to article

Authors and Affiliations

Jarosław Szlugaj
1
ORCID: ORCID
Barbara Radwanek-Bąk
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Spent-filter backwash water is usually discharged into sewers or returned to the head of a water treatment plant (WTP) to be re-processed. The purpose of this study was to characterize and compare two different WTP filter backwash water contents that were obtained by using conventional and air scour backwash methods, and influence the recycling of spent-filter backwash water. For this purpose, the spent-filter backwash water was analyzed at two different Lithuanian WTPs i.e. one using a conventional backwash method and another using an air scour backwash method (Eades, 2001). The impact of recycling spent-filter backwash on the treated water's quality was evaluated by comparing the concentration of the total iron content with suspended solids in the filtered water by following legislation rules. Backwash water in this research contained a significant concentration of total iron and a large amount of suspended solids. In this study it was found that, conventional sedimentation by gravity was sufficient for the removal of suspended solids and iron from the backwash water. Further, the presence of analyzed chemical compounds accumulating into the backwash water after sedimentation had no significant impact on the filtration's effectiveness. Therefore, this research shows that air-scour backwash water can be recycled in the same way as conventional backwash water, but a different sedimentation rate needs to be evaluated.
Go to article

Authors and Affiliations

Marina Valentukeviciene
Download PDF Download RIS Download Bibtex

Abstract

Zeolites, minerals with the formula Mx/n[AlO2]x(SiO2)y] zH2O, are environmentally friendly materials used as water treatment adsorbents, gas adsorbents, and petrochemical catalysts. This study used a mixture of aluminum black dross and waste glass to synthesize zeolites via a hydrothermal synthesis and analyzed the effects of varying reaction time on phase changes under different synthesis conditions. With increased reaction times, a phase change from zeolite Na-P1 to analcime was observed; on employing hydrothermal synthesis at 150°C for 96 h, the majority of the crystalline structures changed into analcime. Heavy metal cation adsorption was tested to assess the applicability of the synthesized analcime to water treatment. Zeolite adsorption of at least 95% was observed for both Pd and Cd ions. Although a higher level of adsorption was observed for Pb ion than Cd ion, Cd ion was demonstrated to undergo relatively faster adsorption when tested under optimal pulp density at the same level of adsorption (95%).
Go to article

Authors and Affiliations

Yubin Kang
1
ORCID: ORCID
Byoungyong Im
1
ORCID: ORCID
Jin-Ju Choi
1
ORCID: ORCID
Jin-Ho Yoon
1
ORCID: ORCID
Dae-Guen Kim
1
ORCID: ORCID

  1. Institute For Advanced Engineering, 17180, Goan-ro, 51 Beon-gil, Baegam-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of research aimed at developing assumptions for the preparation of a charge in the form of fine scrap copper alloys (chips/shells) guaranteeing effective removal of impurities and obtaining a metal bath of the required metallurgical quality. The tests were conducted for tin-zinc-lead bronze of the CC499K grade. As part of the work, the characteristics of this type of waste available on the market were made in terms of quality and the possibility of their use for the production of both alloys and finished products, taking into account the elimination of harmful impurities that may ultimately affect the production process adversely.
The subject of the work was the selection of appropriate waste cleaning methods in the form of an oily shell in the CC499K (CuZn5Sn5Pb2) grade and its drying in terms of increasing the use of impure waste from machining as scrap for direct melting. The waste was assessed in relation to individual parametres. The research was carried out on 3 groups of waste, with varying degrees of moisture.
Go to article

Authors and Affiliations

W. Malec
1
ORCID: ORCID
B. Cwolek
1
ORCID: ORCID
A. Brudny
1
ORCID: ORCID
J. Kulasa
1
ORCID: ORCID
W. Marek
2
K. Stolorz
2
D. Wróbel
2
A. Filipowicz
2

  1. Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Poland
  2. COGNOR S.A. Oddział OM Szopienice w Katowicach, Poland
Download PDF Download RIS Download Bibtex

Abstract

Production waste is one of the major sources of aluminium for recycling. Depending on the waste sources, it can be directly melted in furnaces, pre-cleaned and then melted, or due to the small size of the material (powder or dust) left without remelting. The latter form of waste includes chips formed during mechanical cutting (sawing) of aluminium and its alloys. In this study, this type of chips (with the dimensions not exceeding 1 mm) were melted. The obtained results of laboratory tests have indicated that even chips of such small sizes pressed into cylindrical compacts can be remelted. The high recovery yield (up to 94 %) and degree of metal coalescence (up to 100 %) were achieved via thermal removal of impurities under controlled conditions of a gas atmosphere (argon or/and air), followed with consolidation of chips at a pressure of minimum 170 MPa and melting at 750 oC with NaCl-KCl-Na3AlF6 salt flux.

Go to article

Authors and Affiliations

P. Palimąka

This page uses 'cookies'. Learn more