Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the assessment of reliability depending on the reinforcement cover thickness for elements subject to bending. Based on the experimental tests of 12 reinforced concrete beams subjected to four-point bending the numerical model was validated. In the next steps this numerical model was used for the Monte Carlo simulation. During the analyses the failure probability and the reliability index were determined by two methods – using probabilistic method –FORMand fully probabilistic method Monte Carlo with the use of variance reduction techniques by Latin hypercube sampling (LHS). The random character of input data – compressive strength of concrete, yield strength of steel and effective depth of reinforcement were assumed in the analysis. Non-parametric Spearman rank correlation method was used to estimate the statistical relationship between random variables. Analyses have shown a significant influence of the random character of effective depth on reliability index and the failure probability of bending elements.
Go to article

Bibliography

[1] ATENA, Program Documentation, Prague, 2014.
[2] L. Buda-Ozóg, “Diagnostics of technical condition of concrete elements using dynamic methods”, PhD thesis, Rzeszow University of Technology, Poland 2008 (in Polish).
[3] L. Buda-Ozóg, K. Sienkowska, and I. Skrzypczak, “Reliability of beams subjected to torsion designed using STM”, Archives of Civil Engineering, vol. 66, no. 3, pp. 555–573, 2020. DOI: 10.24425/ace.2020.134413.
[4] C. Cornell, “A probability based structural code”, American Concrete Institute Journal, no. 66, pp. 974–985, 1969.
[5] EN 1990, Eurocode – Basis of structural design. Brussels: CEN, 2002.
[6] FREET, Program Documentation, Prague 2011.
[7] GUNB reports on construction disasters from 1995 to 2009, conference materials “Construction failures”, Szczecin, 2011 (in Polish).
[8] D. Huntington and C. Lyrintzis, “Improvements to and limitations of Latin hypercube sampling. Probabilistic Engineering Mechanics”, vol. 13, no. 4, pp. 245–253, 1997.
[9] ISO 13822, Bases for design of structures – Assessment of existing structures. Geneve, Switzerland: ISO TC98/SC2, 2010.
[10] ISO 2394, General principles on reliability for structures, 2010.
[11] A.S. Nowak and K.R. Collins, “Reliability of Structures”, McGraw-Hill, p. 338, New York, 2000.
[12] Probabilistic Model Code, JCSS working material, http://www.jcss.ethz.ch/ (online), 2012.
[13] SARA, Program Documentation, Prague, 2015.
[14] I. Skrzypczak, L. Buda-Ozóg, and M. Słowik, “Projektowanie elementów żelbetowych z założoną niezawodnością”, Czasopismo Inżynierii Lądowej, Środowiska i Architektury, vol. 61, no 3/II, pp. 503–510, 2014, DOI: 10.7862/rb.2014.116.
[15] A.C.W.M. Vrouwenvelder and N. Scholten, “Assessment criteria for existing structures”, Structural Engineering International, vol. 20, no. 1, pp. 62–65, 2010.
[16] K. Winkelman, “Obliczanie niezawodności konstrukcji inżynierskich metodami symulacyjnymi oraz metodą powierzchni odpowiedzi”, PhD thesis, Gdansk University of Technology, Gdansk, 2013.
[17] S. Wolinski, “Probabilistyczne podstawy współczesnych norm projektowania”, Zeszyty Naukowe Politechniki Rzeszowskiej, vol. 58, pp. 269–288, 2011.

Go to article

Authors and Affiliations

Katarzyna Sieńkowska
1
ORCID: ORCID
Lidia Buda-Ożóg
1
ORCID: ORCID

  1. Rzeszów University of Technology, Faculty of Civil and Environmental Engineering and Architecture, Powstancow Warszawy 12, 35-859 Rzeszów, Poland

This page uses 'cookies'. Learn more