Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Statistical conformity criteria for the compressive strength of concrete are a matter of debate. The criteria can have prejudicial effects on construction quality and reliability. Hence, the usefulness of statistical criteria for the small sample size n = 3 is questioned. These defects can cause a reduction in the quality of produced concrete and, consequently, too much risk for the recipient (investor). For this reason, the influence of conformity control on the value of the reliability index of concrete and reinforced concrete has been determined. The authors limited their consideration to the recommended standards PN-EN 206-1, PN-EN 1992 and ISO 2394 method of reliability index, which belongs to the analytical methods FORM (First Order Reliability Method). It assumes that the random variables are defined by two parameters of the normal distribution or an equivalent normal: the mean and the standard deviation. The impact of conformity control for n = 3 for concrete structures, designed according to the Eurocode 1992, for which the compressive strength of concrete is the capacity dominant parameter (sensitivity factor of dominating resistance parameter according to the FORM is 0.8), has been determined by evaluation of the reliability index.

Go to article

Authors and Affiliations

I. Skrzypczak
L. Buda-Ożóg
Download PDF Download RIS Download Bibtex

Abstract

The study deals with stability and dynamic problems in bar structures using a probabilistic approach. Structural design parameters are defined as deterministic values and also as random variables, which are not correlated. The criterion of structural failure is expressed by the condition of non-exceeding the admissible load multiplier and condition of non-exceeding the admissible vertical displacement. The Hasofer-Lind index was used as a reliability measure. The primary research tool is the FORM method. In order to verify the correctness of the calculations Monte Carlo and Importance Sampling methods were used. The sensitivity of the reliability index to the random variables was defined. The limit state function is not an explicit function of random variables. This dependence was determined using a numerical procedure, e.g. the finite element methods. The paper aims to present the communication between the STAND reliability analysis program and the KRATA and MES3D external FE programs.

Go to article

Authors and Affiliations

A. Dudzik
U. Radoń
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a proposal for the assessment of the reliability of steel truss (both statically determinate and indeterminate) in the persistent and accidental design situation. In the analysis, a probabilistic approach was used. The global Hasofer-Lind reliability index was employed, computed in successive time steps for the whole structure, not for individual elements. The statically determinate truss was modelled as a serial system from the reliability standpoint. For the statically indeterminate truss, kinematically admissible failure mechanisms were determined by means of the examination of the singularity of the stiffness matrix of the structure, converting the truss into a geometrically variable system. For the problem thus formulated, a serial-parallel reliability model was constructed. Monitoring the reliability index in the successive minutes of the fire makes it possible to estimate the probability of the structure failure, and to decide whether the required safety level is maintained.

Go to article

Authors and Affiliations

K. Kubicka
U. Radoń
Download PDF Download RIS Download Bibtex

Abstract

An advanced evaluation technique, helpful in the fire resistance assessment of a simple steel structure exposed to fire is presented and discussed in detail on the example of an unrestrained and uniformly heated steel beam. The proposed design methodology deals with the generalised probability-based approach in which the most probable failure point is formally identified. The random nature of all variables considered in the detailed analysis is taken into account. The critical temperature of the steel from which the considered beam is made of is accepted here as the authoritative safety measure. This temperature value is associated with the fire resistance limit state defined for the maximum acceptable value of failure probability. When forecasting the failure probability, not only the risk of a potential fire being initiated but also not being effectively extinguished is included in the calculation. Various levels of the target failure probability may be assumed in such the analysis, depending on the selected reliability class. They are specified in general by setting an appropriate value of the required reliability index β fire req. In the presented design algorithm no representative values of the considered random variables are specified. The critical temperature estimates obtained from these calculations are always less restrictive in comparison with the corresponding solutions computed after applying the conventional standard procedure.

Go to article

Authors and Affiliations

Mariusz Maślak
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In the paper, the Hasofer-Lind index is applied for determining the probability of stability loss oftruss structure under random load. In 1974 Hasofer-Lind proposed a modified reliability index thatdid not exhibit the invariance problem. The “correction” is the evaluation the limit state functionat a point known as the “design point”, instead of the mean values. The design point is generallynot known a priori, an iteration technique must be used to find out the reliability index. The papershows how the reliability index changes under the influence of different variables mean value,standard deviation, and probability density function.

Go to article

Authors and Affiliations

U. Radoń
Download PDF Download RIS Download Bibtex

Abstract

In line with the principles of modern design a building structure should not only be safe but also optimized. In deterministic optimization, the uncertainties of the structures are not explicitly taken into account. Traditionally, uncertainties of the structural system (i.e. material parameters, loads, dimensions of the cross-sections) are considered by means of partial safety factors specified in design codes. Worth noticing, that optimal structures are sensitive to randomness design parameters and deterministic optimal solutions may lead to reduced reliability levels. It therefore seems natural to extend the formulation of deterministic optimization with the random scatter of parameter values. Such a formulation is offered by robust optimization and reliability-based design optimization. The applicability ofRBDOis strongly dependent on the availability of the joint probability density function.Aformulation of non-deterministic optimization that better adapts to the design realities is robust optimization. Unlike RBDO optimization, this formulation does not require estimation of failure probabilities. In the paper using the examples of steel beams, the authors compare the strengths and weaknesses of both formulations.
Go to article

Authors and Affiliations

Paweł Zabojszcza
1
ORCID: ORCID
Urszula Radoń
1
ORCID: ORCID
Piotr Tauzowski
2
ORCID: ORCID

  1. Kielce University of Technology, Faculty of Civil Engineering and Architecture, Al. Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland
  2. Institute of Fundamental Technological Research Polish Academy of Sciences, Department of Informationand Computational Science, Adolfa Pawinskiego 5B St., 02-106 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the assessment of reliability depending on the reinforcement cover thickness for elements subject to bending. Based on the experimental tests of 12 reinforced concrete beams subjected to four-point bending the numerical model was validated. In the next steps this numerical model was used for the Monte Carlo simulation. During the analyses the failure probability and the reliability index were determined by two methods – using probabilistic method –FORMand fully probabilistic method Monte Carlo with the use of variance reduction techniques by Latin hypercube sampling (LHS). The random character of input data – compressive strength of concrete, yield strength of steel and effective depth of reinforcement were assumed in the analysis. Non-parametric Spearman rank correlation method was used to estimate the statistical relationship between random variables. Analyses have shown a significant influence of the random character of effective depth on reliability index and the failure probability of bending elements.
Go to article

Bibliography

[1] ATENA, Program Documentation, Prague, 2014.
[2] L. Buda-Ozóg, “Diagnostics of technical condition of concrete elements using dynamic methods”, PhD thesis, Rzeszow University of Technology, Poland 2008 (in Polish).
[3] L. Buda-Ozóg, K. Sienkowska, and I. Skrzypczak, “Reliability of beams subjected to torsion designed using STM”, Archives of Civil Engineering, vol. 66, no. 3, pp. 555–573, 2020. DOI: 10.24425/ace.2020.134413.
[4] C. Cornell, “A probability based structural code”, American Concrete Institute Journal, no. 66, pp. 974–985, 1969.
[5] EN 1990, Eurocode – Basis of structural design. Brussels: CEN, 2002.
[6] FREET, Program Documentation, Prague 2011.
[7] GUNB reports on construction disasters from 1995 to 2009, conference materials “Construction failures”, Szczecin, 2011 (in Polish).
[8] D. Huntington and C. Lyrintzis, “Improvements to and limitations of Latin hypercube sampling. Probabilistic Engineering Mechanics”, vol. 13, no. 4, pp. 245–253, 1997.
[9] ISO 13822, Bases for design of structures – Assessment of existing structures. Geneve, Switzerland: ISO TC98/SC2, 2010.
[10] ISO 2394, General principles on reliability for structures, 2010.
[11] A.S. Nowak and K.R. Collins, “Reliability of Structures”, McGraw-Hill, p. 338, New York, 2000.
[12] Probabilistic Model Code, JCSS working material, http://www.jcss.ethz.ch/ (online), 2012.
[13] SARA, Program Documentation, Prague, 2015.
[14] I. Skrzypczak, L. Buda-Ozóg, and M. Słowik, “Projektowanie elementów żelbetowych z założoną niezawodnością”, Czasopismo Inżynierii Lądowej, Środowiska i Architektury, vol. 61, no 3/II, pp. 503–510, 2014, DOI: 10.7862/rb.2014.116.
[15] A.C.W.M. Vrouwenvelder and N. Scholten, “Assessment criteria for existing structures”, Structural Engineering International, vol. 20, no. 1, pp. 62–65, 2010.
[16] K. Winkelman, “Obliczanie niezawodności konstrukcji inżynierskich metodami symulacyjnymi oraz metodą powierzchni odpowiedzi”, PhD thesis, Gdansk University of Technology, Gdansk, 2013.
[17] S. Wolinski, “Probabilistyczne podstawy współczesnych norm projektowania”, Zeszyty Naukowe Politechniki Rzeszowskiej, vol. 58, pp. 269–288, 2011.

Go to article

Authors and Affiliations

Katarzyna Sieńkowska
1
ORCID: ORCID
Lidia Buda-Ożóg
1
ORCID: ORCID

  1. Rzeszów University of Technology, Faculty of Civil and Environmental Engineering and Architecture, Powstancow Warszawy 12, 35-859 Rzeszów, Poland

This page uses 'cookies'. Learn more