Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Most scheduling methods used in the construction industry to plan repetitive projects assume that process durations are deterministic. This assumption is acceptable if actions are taken to reduce the impact of random phenomena or if the impact is low. However, construction projects at large are notorious for their susceptibility to the naturally volatile conditions of their implementation. It is unwise to ignore this fact while preparing construction schedules. Repetitive scheduling methods developed so far do respond to many constructionspecific needs, e.g. of smooth resource flow (continuity of work of construction crews) and the continuity of works. The main focus of schedule optimization is minimizing the total time to complete. This means reducing idle time, but idle time may serve as a buffer in case of disruptions. Disruptions just happen and make optimized schedules expire. As process durations are random, the project may be delayed and the crews’ workflow may be severely affected to the detriment of the project budget and profits. For this reason, the authors put forward a novel approach to scheduling repetitive processes. It aims to reduce the probability of missing the deadline and, at the same time, to reduce resource idle time. Discrete simulation is applied to evaluate feasible solutions (sequence of units) in terms of schedule robustness.

Go to article

Authors and Affiliations

Piotr Jaśkowski
ORCID: ORCID
Sławomir Biruk
ORCID: ORCID
Michał Krzemiński
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The construction contractor is concerned with reducing the cost of the project, including reducing unnecessary downtime. This is achieved when resources are fully utilized; this means the crews work continuously moving without interruption from one location to the other. However, any disturbance in the optimally scheduled workflow caused by random events is likely to result in delays, interruptions in the crews work, and productivity losses. There is therefore a need for scheduling methods that allow plans to be more resilient to disruptions and ensure a reduction in downtime and implementation costs. The authors put forward a proactive-reactive approach to the schedule risk management. Proposed method makes it possible to protect schedule deadlines from the impact of risk factors by allocating time buffers (proactive approach). It also takes into account the measures that managers take during execution in response to delays that occur, such as changing construction methods, employing extra resources, or working overtime (reactive approach). It combines both ideas and is based on project simulation technique. The merits of the proposed approach are illustrated by a case of a repetitive project to erect a number of buildings. The presented example proves that the proposed method enables the planner to estimate the scale of delays of processes’ start and consider the impact of measures to reduce duration of processes in particular locations taken in reaction to delays. Thus, it is possible to determine the optimal schedule, at which the costs of losses associated with delays and downtime are minimal.
Go to article

Authors and Affiliations

Piotr Jaskowski
1
ORCID: ORCID
Sławomir Biruk
1
ORCID: ORCID
Michał Krzeminski
2
ORCID: ORCID

  1. Lublin University of Technology, Faculty of Civil Engineering and Architecture, Nadbystrzyckastr. 40, 20-618 Lublin, Poland
  2. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

It is a usual practice for a contractor to deliver several projects at a time. Typically, the projects involve similar types of works and share the same pool of resources (i.e. construction crews). For this reason, the company’s portfolio of orders considered for a particular planning horizon can be modeled as a project with repeatable processes to be performed in heterogeneous units located in a number of construction sites. Its scheduling requires determining the best sequence of the resources’ moving from unit to unit while minding the due dates related with particular orders as well as resource continuity constraints. The authors present a model of this scheduling problem in the form of a mixed-integer linear program. The aim is to schedule a portfolio of projects in a way that minimizes the total of the resource idle time-related costs, the indirect costs, and the delay penalties. The model can be solved by means of a general-purpose solver. The model is applied to schedule a portfolio of multifamily housing projects.
Go to article

Authors and Affiliations

Piotr Jaśkowski
1
ORCID: ORCID
Sławomir Biruk
1
ORCID: ORCID
Michał Krzemiński
2
ORCID: ORCID

  1. Lublin University of Technology, Faculty of Civil Engineering and Architecture, Nadbystrzycka str. 40, 20-618 Lublin, Poland
  2. Warsaw University of Technology, Faculty of Civil Engineering, Armii Ludowej str. 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Duration of construction projects can be reduced by harmonizing construction processes: adjusting productivity rates of specialized crews and enabling the crews to work in parallel as in a production line. This is achievable in the case of projects whose scope can be divided into units where a similar type of work needs to be conducted in the same sequence. A number of repetitive project scheduling methods have been developed to assist the planner in minimizing the execution time and smoothing resource profiles. However, the workflow, especially in construction, is subject to disturbance, and the actual process durations are likely to vary from the as-scheduled ones. The inherent variability of process durations results not only in delays of a particular process in a particular unit but also in the propagation of disruptions throughout the initially well-harmonized schedule. To counteract the negative effects of process duration variability, a number of proactive scheduling methods have been developed. They consist in some form of predicting the conditions to occur in the course of the project and implementing a strategy to mitigate disturbance propagation. This paper puts forward a method of scheduling repetitive heterogeneous processes. The method aims to reduce idle time of crews. It is based on allocating time buffers in the form of breaks between processes conducted within units. The merits of the method are illustrated by an example and assessed in the course of a simulation experiment.
Go to article

Authors and Affiliations

Piotr Jaśkowski
1
ORCID: ORCID
Sławomir Biruk
1
ORCID: ORCID
Michał Krzemiński
2
ORCID: ORCID

  1. Lublin University of Technology, Faculty of Civil Engineering and Architecture, Nadbystrzycka str.40, 20-618 Lublin, Poland
  2. Warsaw University of Technology, Faculty of Civil Engineering, Armii Ludowej str. 16, 00-637 Warsaw, Poland

This page uses 'cookies'. Learn more