Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Rotors of rotating machines are often mounted in hydrodynamic bearings. Loading alternating between the idling and full load magnitudes leads to the rotor journal eccentricity variation in the bearing gap. To avoid taking undesirable operating regimes, its magnitude must be kept in a certain interval. This is offered by the hydrodynamic bearings lubricated with smart oils, the viscosity of which can be changed by the action of a magnetic field. A new design of a hydrodynamic bearing lubricated with magnetically sensitive composite fluid is presented in this paper. Generated in the electric coil, the magnetic flux passes through the bearing housing and the lubricant layer and then returns to the coil core. The action of the magnetic field on the lubricant affects the apparent fluid viscosity and thus the position of the rotor journal in the bearing gap. The developed mathematical model of the bearing is based on applying the Reynolds equation adapted for the case of lubricants exhibiting the yielding shear stress. The results of the performed simulations confirmed that the change of magnetic induction makes it possible to change the bearing load capacity and thus to keep the rotor journal eccentricity in the required range. The extent of control has its limitations. A high increase in the loading capacity can arrive at the rotor forced vibration’s loss of stability and induce large amplitude oscillation.
Go to article

Bibliography

  1. W.-X. Wu and F. Pfeiffer, “Active vibration damping for rotors by a controllable oil-film bearing,” in Proc. of the Fifth International Conference on Rotor Dynamics, 1998, pp. 431‒442.
  2. J.M. Krodkiewski and L.D. Sun, “Modelling of multi-bearing rotor systems incorporating an active journal bearing,” J. Sound Vib., vol. 210, no. 3, pp. 215‒229, 1998.
  3. P.M. Przybylowicz, “Stability of journal bearing system with piezoelectric elements,” Mach. Dyn. Probl., vol. 24, no. 1, pp. 155‒171, 2000.
  4. T. Szolc, K. Falkowski, M. Henzel, and P. Kurnyta-Mazurek, “Determination of parameters for a design of the stable electro-dynamic passive magnetic support of a high-speed flexible rotor,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 1, pp. 91‒105, 2019.
  5. H. Urreta, Z. Leicht, A. Sanchez, A. Agirre, P. Kuzhir, and G. Magnac, “Hydrodynamic Bearing Lubricated with Magnetic Fluids,” J. Intell. Mater. Syst. Struct., vol. 21, 2010.
  6. X. Wang, H. Li, M. Li, H. Bai, G. Meng, and H. Zhang, “Dynamic characteristics of magnetorheological fluid lubricated journal bearing and its application to rotor vibration control,” J. Vibroeng., vol. 17, pp. 1912‒1927, 2015.
  7. J. Zapoměl and P. Ferfecki, “The influence of ferromagnetic fluids on performance of hydrodynamic bearings,” Vibroeng. Procedia, vol. 27, pp. 133‒138, 2019.
  8. J. Zapoměl and P. Ferfecki, “Study of the load capacity and vibration stability of rotors supported by hydrodynamic bearings lubricated by magnetically sensitive oil,” in Proc. of the 14th International Conference on Dynamics of Rotating Machines, 2021, pp. 1‒9.
  9. D. Susan-Resiga and L. Vékás, “From high magnetization ferrofluids to nano-micro composite magnetorheological fluid: properties and applications,” Rom. Rep. Phys., vol. 70, pp. 1‒29, 2018.
  10. N. Ida. Engineering Electromagnetics. Heidelberg: Springer, 2015.
  11. P. Ferfecki, J. Zapoměl, and J. Kozánek, “Analysis of the vibration attenuation of rotors supported by magnetorheological squeeze film dampers as a multiphysical finite element problem,” Adv. Eng. Software, vol. 104, pp. 1‒11, 2017.
  12. J. Zapoměl. Computer Modelling of Lateral Vibration of Rotors Supported by Hydrodynamical Bearings and Squeeze Film Damper. Ostrava: VSB-Technical University of Ostrava, 2007. [in Czech]
  13. E. Krämer. Dynamics of Rotors and Foundations. Berlin, Heidelberg: Springer-Verlag, 1993.
Go to article

Authors and Affiliations

Jaroslav Zapoměl
1 2
Petr Ferfecki
1 3

  1. Department of Applied Mechanics, VSB – Technical University of Ostrava, Ostrava, Czech Republic
  2. Department of Dynamics and Vibration, Institute of Thermomechanics, Prague, Czech Republic
  3. IT4Innovations National Supercomputing Center, VSB – Technical University of Ostrava, Ostrava, Czech Republic

This page uses 'cookies'. Learn more