Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 81
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Dr. Aleksandra Przegalinska explains why we find humanoid robots so creepy and considers whether watching machines play football is actually fun.

Go to article

Authors and Affiliations

Aleksandra Przegalińska
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the design of a versatile mechanism that can enable new directions in amphibious, all-terrain locomotion. The simple, passive, flapped-paddle can be integrated with several structures that are well-suited for locomotion in terrestrial applications. The flapped-paddle overcomes a serious limitation of the conventional flipper where the net lateral forces generated during oscillatory motion in aquatic environments averages out to zero. The flapped-paddle and its mounting, collectively, rests in natural positions in the aquatic environment so as to maximize hydrodynamic force utilization and consequently the propulsive efficiency. The simplicity of the design enabled us to develop a simulation model that concurs well with experimental results. The results reported in the paper are based on integrating the flapped-paddle with the curved leg of the RHex hexapod robot.
Go to article

Bibliography

  1.  A. Crespi, K. Karakasiliotis, A. Guignard, and A.J. Ijspeert, “Salamandra robotica II: an amphibious robot to study salamander-like swimming and walking gaits,” IEEE Trans. Rob., vol. 29, no. 2, pp. 308‒320, 2013.
  2.  M. Gad-El-Hak, “Coherent structures and flow control: genesis and prospect,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 3, pp. 411‒444, 2019.
  3.  A.J. Ijspeert, A. Crespi, D. Ryczko, and J.M. Cabelguen, “From swimming to walking with a salamander robot driven by a spinal cord model,” Science, vol. 315, no. 5817, pp. 1416‒1420, 2007.
  4.  E. Natarajan, K.Y. Chia, A.A.M. Faudzi, W.H. Lim, Ch.K. Ang, and A. Jafaari, “Bio Inspired Salamander Robot with Pneu-Net Soft ac- tuators-Design and Walking Gait Analysis,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 3, 2021, Article number: e137055, doi: 10.24425/ bpasts.2021.137055.
  5.  K. Karakasiliotis and A.J. Ijspeert, “Analysis of the terrestrial locomotion of a salamander robot,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis 2009, pp. 5015‒5020.
  6.  P. Liljebäck, Ø. Stavdahl, K.Y. Pettersen, and J.T. Gravdahl, “Mamba-A waterproof snake robot with tactile sensing,” in Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, US, 2014, pp. 294‒301.
  7.  S. Hirose and H. Yamada, “Snake-like robots machine design of biologically inspired robots,” IEEE Rob. Autom. Mag., vol. 3, 2009.
  8.  J. Yu, R. Ding, Q. Yang, M. Tan, and J. Zhang, “Amphibious Pattern Design of a Robotic Fish with Wheel-propeller-fin Mechanisms,” J. Field Rob., vol. 30, no. 5, pp. 702‒716, 2013.
  9.  J. Yu, R. Ding, Q. Yang, M. Tan, W. Wang, and J. Zhang, “On a bio-inspired amphibious robot capable of multimodal motion,” IEEE/ ASME Trans. Mechatron., vol. 17, no. 5, pp. 847‒856, 2011.
  10.  T. Paschal, M.A. Bell, J. Sperry, S. Sieniewicz, R.J. Wood, and J.C. Weaver, “Design, fabrication, and characterization of an untethered amphibious sea urchin-inspired robot,” IEEE Rob. Autom. Lett., vol. 4, no. 4, pp. 3348‒3354, 2019.
  11.  V. Kaznov and M. Seeman, “Outdoor navigation with a spherical amphibious robot,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan 2010, pp. 5113‒5118.
  12.  Y. Shen, Y. Sun, H. Pu and S. Ma, “Experimental verification of the oscillating paddling gait for an ePaddle-EGM amphibious locomotion mechanism,” IEEE Rob. Autom. Lett., vol. 2, no. 4, pp.  2322‒2327, 2017.
  13.  U. Saranli, M. Buehler, and D.E. Koditschek, “Design, modeling and preliminary control of a compliant hexapod robot,” in Proceedings of the 2000 IEEE International Conference on Robotics and Automation, San Francisco,CA, 2000, vol.3, pp. 2589‒2596.
  14.  U. Saranli, M. Buehler, and D.E. Koditschek, “RHex: A simple and highly mobile hexapod robot,” Int. J. Rob. Res., vol.  20, no. 7, pp. 616‒631, 2001.
  15.  G. Dudek et al., “Aqua: An amphibious autonomous robot,” Computer, vol. 40, no. 1, pp. 46‒53, 2007.
  16.  Ch. Georgiades, M. Nahon, and M. Buehler, “Simulation of an underwater hexapod robot,” Ocean Eng., vol. 36, no. 1, pp. 39‒47, 2009.
  17.  X. Liang et al., “The amphihex: A novel amphibious robot with transformable leg-flipper composite propulsion mechanism,” in Proceed- ings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Algarve, Portugal, 2012, pp. 3667‒3672.
  18.  S. Zhang, X. Liang, L. Xu, and M. Xu, “Initial development of a novel amphibious robot with transformable fin-leg composite propulsion mechanisms,” J. Bionic Eng., vol. 10, no. 4, pp.434‒445, 2013.
  19.  S. Zhang, Y. Zhou, M. Xu, X. Liang, J. Liu, and J. Yang, “AmphiHex-I: locomotory performance in amphibious environments with specially designed transformable flipper legs,” IEEE/ASME Trans. Mechatron., vol. 21, no. 3, p. 1720‒1731, 2015.
  20.  P. Burzyński, Poland, FLHex: A Flapped-Paddle Hexapod, (Aug. 01, 2021). [Online Video]. Available: https://www.youtube.com/ watch?v=Ux1AlOFUUco (Accessed: Aug. 2, 2021).
  21.  A. Simha, R. Gkliva, Ü. Kotta, and M. Kruusmaa, “A Flapped Paddle-Fin for Improving Underwater Propulsive Efficiency of Oscillatory Actuation,” IEEE Rob. Autom. Lett., vol. 5, no. 2, pp.  3176‒3181, 2020.
  22.  K.E. Crandell and B.W. Tobalske, “Kinematics and aerodynamics of avian upstrokes during slow flight,” J. Exp. Biol., vol. 218, no. 16, pp. 2518‒2527, 2015.
  23.  W. Yang and B. Song, “Experimental investigation of aerodynamics of feather-covered flapping wing,” Appl. Bionics Biomech., vol. 2017, 2017, Article ID: 3019640. doi: 10.1155/2017/3019640.
  24.  B.B. Dey, S. Manjanna, and Dudek G., “Ninja legs: Amphibious one degree of freedom robotic legs,” in Proceedings of the 2013 IEEE/ RSJ International Conference on Intelligent Robots and Systems, Tokio, Japan, 2013, pp. 5622‒5628.
  25.  S.B.A. Kashem, S. Jawed, A. Jubaer, and Q. Uvais, “Design and Implementation of a Quadruped Amphibious Robot Using Duck Feet,” Robotics, vol. 8, no. 3, p. 77, 2019, doi: 10.3390/robotics8030077.
  26.  B. Kwak and J. Bae, “Design of hair-like appendages and comparative analysis on their coordination toward steady and efficient swimming,” Bioinspir. Biomim., vol. 12, no. 3, p. 036014, 2017, doi: 10.1088/1748-3190/aa6c7a.
  27.  S.B. Behbahani and X. Tan, “Design and modeling of flexible passive rowing joint for robotic fish pectoral fins,” IEEE Trans. Rob., vol. 32, no. 5, pp. 1119‒1132, 2016.
  28.  Ch.J. Esposito, J.L. Tangorra, B.E. Flammang, and G.V. Lauder, “A robotic fish caudal fin: effects of stiffness and motor program on locomotor performance,” J. Exp. Biol., vol. 215, no. 1, pp. 56‒67, 2012.
  29.  G.V. Lauder, “Function of the caudal fin during locomotion in fishes: kinematics, flow visualization, and evolutionary patterns,” Am. Zool., vol. 40, no. 1, pp. 101‒122, 2000.
  30.  S.C. Licht, M. Wibawa, F.S. Hover, and M.S. Triantafyllou, “Towards amphibious robots: Asymmetric flapping foil motion underwater produces large thrust efficiently,” Technical Raport, Massachusetts Institute of Technology. Sea Grant College Program, 2009.
  31.  Ch. Meurer, A. Simha, Ü. Kotta, and M. Kruusmaa, “Nonlinear Orientation Controller for a Compliant Robotic Fish Based on Asymmetric Actuation,” in Proceedings of the International Conference on Robotics and Automation (ICRA), Montreal, Canada, 2019, pp. 4688‒4694.
  32.  G.V. Lauder and E.D. Tytell, “Hydrodynamics of undulatory propulsion,” Fish Physiol., vol. 23, pp. 425‒468, 2005.
  33.  M. Bozkurttas, J. Tangorra, G. Lauder, and R. Mittal, “Understanding the hydrodynamics of swimming: From fish fins to flexible pro- pulsors for autonomous underwater vehicles,” Adv. Sci. Technol., vol.58, pp. 193‒202, 2008.
  34.  N. Martin, Ch. Roh, S. Idrees, and M. Gharib, “To flap or not to flap: comparison between flapping and clapping propulsions,” J. Fluid Mech., vol.822, p. R5, 2017, doi: 10.1017/jfm.2017.252.
  35.  M. Sfakiotakis, D.M. Lane, and J.B.C. Davies, “Review of fish swimming modes for aquatic locomotion,” IEEE J. Oceanic Eng., vol. 24, no. 2, pp. 237‒252, 1999.
  36.  R. Gkliva, M. Sfakiotakis, and M. Kruusmaa, “Development and experimental assessment of a flexible robot fin,” in Proceedings of the 2018 IEEE International Conference on Soft Robotics (RoboSoft), Livorno, Italy, 2018, pp. 208‒213.
Go to article

Authors and Affiliations

Piotr Burzynski
1
Ashutosh Simha
2
Ülle Kotta
2
Ewa Pawluszewicz
1
Shivakumar Sastry
3

  1. Bialystok University of Technology, Department of Robotics and Mechatronics, ul. Wiejska 45C, 15-351 Bialystok, Poland
  2. School of Information Technologies, Department of Software Science, Tallinn University of Technology, 12618 Tallinn, Estonia
  3. University of Akron, Department of Electrical and Computer Engineering, Akron, Ohio 44325, USA
Download PDF Download RIS Download Bibtex

Abstract

The navigation of mobile robots is a key element of autonomous systems, which allows robots to move effectively and securely in changing environments with greater autonomy and precision. This study aims to provide researchers with a comprehensive guide for selecting the best path-planning methods for their particular projects. We evaluate some popular algorithms that are regularly used in mobile robot navigation, in order to demonstrate their specifications and determine where they are most effective. For example, one algorithm is used to model the problem as a standard graph, and another algorithm is found to be the most suitable for highly dynamic and highly dimensional environments, due to its robust path-planning capabilities and efficient route construction. We also filter high-performance algorithms in terms of computational complexity, accuracy, and robustness. In conclusion, this study provides valuable information on its individual strengths and weaknesses, helping robotics and engineers make informed decisions when selecting the most appropriate algorithm for their specific applications.
Go to article

Authors and Affiliations

Mehmet Kara
1
ORCID: ORCID

  1. AGH University of Science and Technology, Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Programming frameworks [1] are application generators with the following components: library of software modules (building blocks out of which the system is constructed), a method for designing new modules that can be appended to the above mentioned library, a pattern according to which ready modules can be assembled into a complete system jointly exerting control over it and realizing the task at hand. The presented transition function based formalism can be applied to specifying programming frameworks for robot controllers executing very diverse tasks. The paper deals with systems consisting of multiple embodied agents, influencing the environment through effectors, gathering information from the environment through sensors and communicating with other agents through communication channels. The presented code patterns pertain to behavioural agents. The formalism was instrumental in the design of MRROC++ robot programming framework, which has been used for producing controllers of single and two manipulator systems performing diverse tasks. The formalism introduces rigor into the discussion of the structure of embodied agent controllers. It is used as the means for the specification of the functions of the components of the control system and the structure of the communication links between them. This structures the implementation of a programming framework, and that in turn makes the coding of specific controllers much easier, both from the point of view of dealing with the hardware configuration of the system and the specific task that has to be executed.

Go to article

Authors and Affiliations

C. Zieliński
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the authors present a robot for pipe inspection and exploration, which has in its structure a module for the maintenance of a constant pressure force between the robot's wheels and the inside diameter of the pipe. The paper starts with a short introduction about necessity of the presented solution followed by design aspects and finalizing with the test of the developed compliant module.

Go to article

Authors and Affiliations

Claudiu Cirebea
Mihai Tatar
Vistrian Matieş
Download PDF Download RIS Download Bibtex

Abstract

Strategic Informatics is a monograph of the field of computer science in the field of; Its strategic development waves, the challenges of technological progress in the context of the strategic role of computer science, the main strategy-oriented applications in business, healthcare, agriculture, education and private home, strategic challenges of computer science in the humanities, digital state and city, sustainable development and information ethics, morality, and rights.
Go to article

Authors and Affiliations

Kazimierz Kowalski
1

  1. Professor Emeritus, California State University, Dominguez Hills
Download PDF Download RIS Download Bibtex

Abstract

Robotics specialists observe nature carefully and try to recreate the complex motions performed by people and animals with ease. Locomotion and the ability to manipulate flexible objects are especially challenging, but progress is being made.

Go to article

Authors and Affiliations

Krzysztof Walas
Download PDF Download RIS Download Bibtex

Abstract

Artificial intelligence technologies are moving forward by leaps and bounds, right before our very eyes. How well prepared are we to treat them not as tools or rivals, but as autonomous partners?
Go to article

Authors and Affiliations

Artur Modliński
1
Aleksandra Przegalińska
2

  1. University of Łódź
  2. Kozminski University in Warsaw
Download PDF Download RIS Download Bibtex

Abstract

Statystyczny Polak spędza przeciętnie około 20% swojego życia na wykonywaniu pracy zawodowej, stąd działania pracodawcy, jego służb bhp i organów państwowej kontroli skupiają się nad zapewnieniem możliwie jak najbardziej bezpiecznych warunków środowiska pracy. Całkowite wyeliminowanie z otoczenia pracownika czynników, będących źródłem zagrożeń niebezpiecznych, szkodliwych bądź uciążliwych, w wielu przypadkach jest zadaniem trudnym, a często niemożliwym. Wynika to z faktu, iż dany czynnik stanowić może podstawową składową procesu technologicznego i nie może zostać wykluczony, tak jak to ma miejsce w przypadku prac szczególnie niebezpiecznych, np. podczas używania materiałów wybuchowych przeznaczonych do użytku cywilnego. W takim wypadku szczegółowa identyfikacja oraz ocena poziomu zagrożeń, uwzględniająca wiedzę ekspercką z zakresu stosowanych środków strzałowych oraz technologii, stanowi przyczynek do wzrostu poziomu bezpieczeństwa pracownika pomimo stosowania niebezpiecznych substancji, niebezpiecznych środków pracy czy niebezpiecznych technologii. W trakcie eksploatacji metodą odkrywkową jednym z najczęściej stosowanych sposobów odspojenia i rozdrobnienia złoża skalnego jest użycie materiałów wybuchowych. Taka technika urabiania powoduje konieczność zatrudnienia pracowników na stanowiskach specjalistycznych, na których występuje wiele zagrożeń tzw. ogólnokopalnianych oraz tych wynikających z bezpośredniej ekspozycji na czynnik niebezpieczny, jakim są środki strzałowe. W niniejszym artykule przedstawiono szczegółową identyfikację zagrożeń na stanowiskach związanych z używaniem materiałów wybuchowych, uwzględniającą wykonywane czynności podczas realizacji robót strzałowych w górnictwie odkrywkowym oraz zróżnicowanie tych zagrożeń w przypadku stosowania różnych systemów inicjowania materiałów wybuchowych. Po zidentyfikowaniu zagrożeń dokonano ich hierarchizacji z wykorzystaniem metody Analytic Hierarchy Process (AHP), która jest jedną z technik wielokryterialnego podejmowania decyzji, umożliwiającą bezpośrednie porównanie między sobą i szeregowanie według przyjętych kryteriów analitycznych. Na podstawie wyników przeprowadzonych analiz sporządzono ocenę macierzową dla wyznaczenia poziomu ryzyka zagrożeń dla specjalistycznego stanowiska pracy w ruchu odkrywkowego zakładu górniczego – górnika strzałowego.

Go to article

Authors and Affiliations

Michał Dworzak
Dagmara Nowak-Senderowska
Józef Pyra
Download PDF Download RIS Download Bibtex

Abstract

This article presents a hybrid control system for a group of mobile robots. The components of this system are the supervisory controller(s), employing a discrete, event-driven model of concurrent robot processes, and robot motion controllers, employing a continuous time model with event-switched modes. The missions of the robots are specified by a sequence of to-be visited points, and the developed methodology ensures in a formal way their correct accomplishment.
Go to article

Authors and Affiliations

Elżbieta Roszkowska
Download PDF Download RIS Download Bibtex

Abstract

The last decades, when robots have appeared in the operating room, showed the possibility of surgery enhancement by improving precision, repeatability, stability and dexterity. However, taking into consideration still existing limitations of robotics in surgery, and treating the robots as medical devices with the highest degree of safety level requirements, one must take a number of complex actions when preparing the experimental clinical application of a new modern robot Robin Heart. Presented paper describes the current state of procedures carried out in the Robin Heart project of surgery robots prepared for clinical application. Based on experiences with the devices existing on the market and, first of all, thanks to knowledge and expertise gained by our team during last 12 years, intensive work are currently done in order to introduce both mechanical and electronic modifications as well as to improve the safety system. As far as human resources are concerned, a professional team able to carry out the robot-supported surgery is prepared based on the created system of technical and functional trainings on simulation stands, which also includes the developed operation planning procedures. The first telemanipulator designed for clinical practice is the Robin Heart Vision – endoscopic system manipulator.

Go to article

Authors and Affiliations

Zbigniew Nawrat
Paweł Kostka
Download PDF Download RIS Download Bibtex

Abstract

Supplementing well recognised practical models of project and construction management, based on probabilistic and fuzzy events may make possible to transfer the weight of the change and extra orders assessment from the qualitative form to a quantitative one. This assessment, however, is naturally burdened with an immeasurable, subjective aspect. Elaboration of probability of occurrence in a construction project unforeseen building works requires application (in addition to the non-measureable, qualitative criteria) of measurable (quantitative) criteria which still appear during construction project implementation. In reimbursable engineering contracts, a random event described as an extra, supplementary building work has a random character and occurs with a specific likelihood. In lump sum contracts, on the other hand, such a random event has a fuzzy character and its occurrence is defined in a linear manner by the function of affiliation to the set of fuzzy events being identical with unforeseen events. The strive for quantitative presentation of criteria regarded by nature as qualitative and the intention to determine relations between them led to the application of the fuzzy sets theory to this issue. Their properties enable description of the unforeseen works of construction projects in an unambiguous, quantitative way.

Go to article

Authors and Affiliations

J. Konior
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a model to generate a 3D model of a room, where room mapping is very necessary to find out the existing real conditions, where this modeling will be applied to the rescue robot. To solve this problem, researchers made a breakthrough by creating a 3D room mapping system. The mapping system and 3D model making carried out in this study are to utilize the camera Kinect and Rviz on the ROS. The camera takes a picture of the area around it, the imagery results are processed in the ROS system, the processing carried out includes several nodes and topics in the ROS which later the signal results are sent and displayed on the Rviz ROS. From the results of the tests that have been carried out, the designed system can create a 3D model from the Kinect camera capture by utilizing the Rviz function on the ROS. From this model later every corner of the room can be mapped and modeled in 3D.
Go to article

Authors and Affiliations

Syahri Muharom
1
Riza Agung Firmansyah
1
Yuliyanto Agung Prabowo
1

  1. Institut Teknologi Adhi Tama Surabaya, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

This article concerns the use of an integrated RFID system with a mobile robot for the navigation and mapping of closed spaces. The architecture of a prototype mobile robot equipped with a set of RFID readers that performs the mapping functions is described. Laboratory tests of the robot have been carried out using a test stand equipped with a grid of appropriately programmed RFID transponders. A simulation model of the effectiveness of transponder reading by the robot has been prepared. The conclusions from measurements and tests are discussed, and methods for improving the solution are proposed.
Go to article

Authors and Affiliations

Bartosz Pawłowicz
1
ORCID: ORCID
Mariusz Skoczylas
1
ORCID: ORCID
Bartosz Trybus
2
ORCID: ORCID
Mateusz Salach
3
ORCID: ORCID
Marcin Hubacz
2
ORCID: ORCID
Damian Mazur
4
ORCID: ORCID

  1. Departmentof Electronic and Telecommunications Systems, Rzeszów University of Technology, WincentegoPola 2, 35-959 Rzeszow, Poland
  2. Department of Computer and ControlEngineering, Rzeszow University of Technology, Wincentego Pola 2, 35-959 Rzeszow, Poland
  3. Department of Complex Systems, Rzeszow Universityof Technology, Wincentego Pola 2, 35-959 Rzeszow, Poland
  4. Department of Electrical andComputer Engineering Fundamentals, Rzeszow University of Technology, Wincentego Pola 2, 35-959Rzeszow, Poland
Download PDF Download RIS Download Bibtex

Abstract

A companion robot is capable of performing a variety of activities and thus supporting the elderly and people withdisabilities. It should be able to overcome obstacles on its own, respond to what is happening around it in real-time, andcommunicate with its surroundings. It is particularly important to pay attention to these issues, as a companion robot is likely tobecome a participant in traffic. The aim of the research is to develop a mathematical model that takes into account the use of twonavigation solutions in the companion robot. Thanks to this, it will be possible to use the obtained mathematical relationships tocompare various types of navigation and make a rational choice, enabling the implementation of the assumed activities in aspecific external environment. What is new in this article is the analysis of several navigation methods and the presentation ofresearch carried out in real time using an actual robot.
Go to article

Authors and Affiliations

Karolina Krzykowska-Piotrowska
Emilia Grabka
Ewa Dudek
Adam Rosiński
ORCID: ORCID
Kamil Maciuk
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the possibilities of teaching a robot controller to perform operations of autonomous segregation of objects differing in features that can be identified using a vision system.Objects can be arranged freely on the robot scene also covered with others. In the learning phase, a robot operator presents the segregation method by moving subsequent objects held in a human hand, e.g. a red object to container A, a green object to container B, etc. The robot system, after recognizing the idea of segregation that is being done using the vision system, continues this work in an autonomous way, until all identified objects will be removed from robotic scene. There are no restrictions on the dimensions, shapes and placement of containers collecting segregated objects. The developed algorithms were verified on a test bench equipped with two modern robots KUKA LBR iiwa 14 R820.

Go to article

Authors and Affiliations

Edward Jezierski
Piotr Łuczak
Paweł Smyczyński
Dariusz Zarychta
Download PDF Download RIS Download Bibtex

Abstract

O tym, dlaczego obawiamy się humanoidalnych robotów, a także o tym, czy oglądanie maszyn grających w piłkę jest przyjemne, opowiada dr Aleksandra Przegalinska.

Go to article

Authors and Affiliations

Aleksandra Przegalinska
Download PDF Download RIS Download Bibtex

Abstract

In order for a quadruped robot to be able to move on wheels while keeping its platform in horizontal position, and to walk, the kinematic system of its limbs should be so designed that each of the wheels has at least four degrees of freedom. Consequently, the designed system will have many DOFs and many controlled drives. This paper presents a novel solution in which, thanks to a suitable limb kinematic system geometry, the number of drives for the robot travel function, i.e. travelling on an uneven surface with the robot platform kept horizontal, has been reduced by four which are used only for walking. The robot structure, the required geometry of the limb links and the driving torque characteristics are presented. Moreover, an idea of the control system is sketched. Finally, selected results of the tests carried out on the robot prototype are reported.

Go to article

Authors and Affiliations

Antoni Gronowicz
Jarosław Szrek
Download PDF Download RIS Download Bibtex

Abstract

The primary importance of the paper is the application of the efficient formulation for the simulation of open-loop lightweight robotic manipulator. The framework employed in the paper makes use of the spatial operator algebra and the associated equations are expressed in joint space. This compact representation of the manipulator dynamics makes it possible to solve the robot forward and inverse dynamics problems in a recursive and fast manner. In the current form, the presented algorithm can be applied for the dynamics simulation of an open-loop chain system possessing any number of joints. Specifically, the formulation has been successfully applied for the analysis of the 7DOF KUKA LWR robot. Results from a number of test cases for the robot demonstrate the verification of the calculations.

Go to article

Bibliography

[1] A. Valera-Medina, A. Giles, D. Pugh, S. Morris, M. Pohl, and A. Ortwein. Investigation of combustion of emulated biogas in a gas turbine test rig. Journal of Thermal Science, 27:331–340, 2018. doi: 10.1007/s11630-018-1024-1.
[2] K. Tanaka and I. Ushiyama. Thermodynamic performance analysis of gas turbine power plants with intercooler: 1st report, Theory of intercooling and performance of intercooling type gas turbine. Bulletin of JSME, 13(64):1210–1231, 1970. doi: 10.1299/jsme1958.13.1210.
[3] H.M. Kwon, T.S. Kim, J.L. Sohn, and D.W. Kang. Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller. Energy, 163:1050–1061, 2018. doi: 10.1016/j.energy.2018.08.191.
[4] A.T. Baheta and S.I.-U.-H. Gilani. The effect of ambient temperature on a gas turbine performance in part load operation. AIP Conference Proceedings, 1440:889–893, 2012. doi: 10.1063/1.4704300.
[5] F.R. Pance Arrieta and E.E. Silva Lora. Influence of ambient temperature on combined-cycle power-plant performance. Applied Energy, 80(3):261–272, 2005. doi: 10.1016/j.apenergy.2004.04.007.
[6] M. Ameri and P. Ahmadi. The study of ambient temperature effects on exergy losses of a heat recovery steam generator. In: Cen, K., Chi, Y., Wang, F. (eds) Challenges of Power Engineering and Environment. Springer, Berlin, Heidelberg, 2007. doi: 10.1007/978-3-540-76694-0_9.
[7] M.A.A. Alfellag: Parametric investigation of a modified gas turbine power plant. Thermal Science and Engineering Progress, 3:141–149, 2017. doi: 10.1016/j.tsep.2017.07.004.
[8] J.H. Horlock and W.A. Woods. Determination of the optimum performance of gas turbines. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214:243–255, 2000. doi: 10.1243/0954406001522930.
[9] L. Battisti, R. Fedrizzi, and G. Cerri. Novel technology for gas turbine blade effusion cooling. In: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 3: Heat Transfer, Parts A and B. pages 491–501. Barcelona, Spain. May 8–11, 2006. doi: 10.1115/GT2006-90516.
[10] F.J. Wang and J.S. Chiou. Integration of steam injection and inlet air cooling for a gas turbine generation system. Energy Conversion and Management, 45(1):15–26, 2004. doi: 10.1016/S0196-8904 (03)00125-0.
[11] Z. Wang. 1.23 Energy and air pollution. In I. Dincer (ed.): Comprehensive Energy Systems, pp. 909–949. Elsevier, 2018. doi: 10.1016/B978-0-12-809597-3.00127-9.
[12] Z. Khorshidi, N.H. Florin, M.T. Ho, and D.E. Wiley. Techno-economic evaluation of co-firing biomass gas with natural gas in existing NGCC plants with and without CO$_2$ capture. International Journal of Greenhouse Gas Control, 49:343–363, 2016. doi: 10.1016/j.ijggc.2016.03.007.
[13] K. Mohammadi, M. Saghafifar, and J.G. McGowan. Thermo-economic evaluation of modifications to a gas power plant with an air bottoming combined cycle. Energy Conversion and Management, 172:619–644, 2018. doi: 10.1016/j.enconman.2018.07.038.
[14] S. Mohtaram, J. Lin, W. Chen, and M.A. Nikbakht. Evaluating the effect of ammonia-water dilution pressure and its density on thermodynamic performance of combined cycles by the energy-exergy analysis approach. Mechanika, 23(2):18110, 2017. doi: 10.5755/j01.mech.23.2.18110.
[15] M. Maheshwari and O. Singh. Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine. Energy, 168:1217–1236, 2019. doi: 10.1016/j.energy.2018.12.008.
[16] A. Khaliq and S.C. Kaushik. Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Applied Energy, 78(2):179–197, 2004. doi: 10.1016/j.apenergy.2003.08.002.
[17] M. Aliyu, A.B. AlQudaihi, S.A.M. Said, and M.A. Habib. Energy, exergy and parametric analysis of a combined cycle power plant. Thermal Science and Engineering Progress. 15:100450, 2020. doi: 10.1016/j.tsep.2019.100450.
[18] M.N. Khan, T.A. Alkanhal, J. Majdoubi, and I. Tlili. Performance enhancement of regenerative gas turbine: air bottoming combined cycle using bypass valve and heat exchanger—energy and exergy analysis. Journal of Thermal Analysis and Calorimetry. 144:821–834, 2021. doi: 10.1007/s10973-020-09550-w.
[19] F. Rueda Martínez, A. Rueda Martínez, A. Toleda Velazquez, P. Quinto Diez, G. Tolentino Eslava, and J. Abugaber Francis. Evaluation of the gas turbine inlet temperature with relation to the excess air. Energy and Power Engineering, 3(4):517–524, 2011. doi: 10.4236/epe.2011.34063.
[20] A.K. Mohapatra and R. Sanjay. Exergetic evaluation of gas-turbine based combined cycle system with vapor absorption inlet cooling. Applied Thermal Engineering, 136:431–443, 2018. doi: 10.1016/j.applthermaleng.2018.03.023.
[21] A.A. Alsairafi. Effects of ambient conditions on the thermodynamic performance of hybrid nuclear-combined cycle power plant. International Journal of Energy Research, 37(3):211–227, 2013. doi: 10.1002/er.1901.
[22] A.K. Tiwari, M.M. Hasan, and M. Islam. Effect of ambient temperature on the performance of a combined cycle power plant. Transactions of the Canadian Society for Mechanical Engineering, 37(4):1177–1188, 2013. doi: 10.1139/tcsme-2013-0099.
[23] T.K. Ibrahim, M.M. Rahman, and A.N. Abdalla. Gas turbine configuration for improving the performance of combined cycle power plant. Procedia Engineering, 15:4216–4223, 2011. doi: 10.1016/j.proeng.2011.08.791.
[24] M.N. Khan and I. Tlili. New advancement of high performance for a combined cycle power plant: Thermodynamic analysis. Case Studies in Thermal Engineering. 12:166–175, 2018. doi: 10.1016/j.csite.2018.04.001.
[25] S.Y. Ebaid and Q.Z. Al-hamdan. Thermodynamic analysis of different configurations of combined cycle power plants. Mechanical Engineering Research. 5(2):89–113, 2015. doi: 10.5539/mer.v5n2p89.
[26] R. Teflissi and A. Ataei. Effect of temperature and gas flow on the efficiency of an air bottoming cycle. Journal of Renewable and Sustainable Energy, 5(2):021409, 2013. doi: 10.1063/1.4798486.
[27] A.A. Bazmi, G. Zahedi, and H. Hashim. Design of decentralized biopower generation and distribution system for developing countries. Journal of Cleaner Production, 86:209–220, 2015. doi: 10.1016/j.jclepro.2014.08.084.
[28] A.I. Chatzimouratidis and P.A. Pilavachi. Decision support systems for power plants impact on the living standard. Energy Conversion and Management, 64:182–198, 2012. doi: 10.1016/j.enconman.2012.05.006.
[29] T.K. Ibrahim, F. Basrawi, O.I. Awad, A.N. Abdullah, G. Najafi, R. Mamat, and F.Y. Hagos. Thermal performance of gas turbine power plant based on exergy analysis. Applied Thermal Engineering, 115:977–985, 2017. doi: 10.1016/j.applthermaleng.2017.01.032.
[30] M. Ghazikhani, I. Khazaee, and E. Abdekhodaie. Exergy analysis of gas turbine with air bottoming cycle. Energy, 72:599–607, 2014. doi: 10.1016/j.energy.2014.05.085.
[31] M.N. Khan, I. Tlili, and W.A. Khan. thermodynamic optimization of new combined gas/steam power cycles with HRSG and heat exchanger. Arabian Journal for Science and Engineering, 42:4547–4558, 2017. doi: 10.1007/s13369-017-2549-4.
[32] N. Abdelhafidi, İ.H. Yılmaz, and N.E.I. Bachari. An innovative dynamic model for an integrated solar combined cycle power plant under off-design conditions. Energy Conversion and Management, 220:113066, 2020. doi: 10.1016/j.enconman.2020.113066.
[33] T.K. Ibrahim, M.K. Mohammed, O.I. Awad, M.M. Rahman, G. Najafi, F. Basrawi, A.N. Abd Alla, and R. Mamat. The optimum performance of the combined cycle power plant: A comprehensive review. Renewable and Sustainable Energy Reviews, 79:459–474, 2017. doi: 10.1016/j.rser.2017.05.060.
[34] M.N. Khan. Energy and exergy analyses of regenerative gas turbine air-bottoming combined cycle: optimum performance. Arabian Journal for Science and Engineering, 45:5895–5905, 2020. doi: 10.1007/s13369-020-04600-9.
[35] A.M. Alklaibi, M.N. Khan, and W.A. Khan. Thermodynamic analysis of gas turbine with air bottoming cycle. Energy, 107:603–611, 2016. doi: 10.1016/j.energy.2016.04.055.
[36] M. Ghazikhani, M. Passandideh-Fard, and M. Mousavi. Two new high-performance cycles for gas turbine with air bottoming. Energy, 36(1):294–304, 2011. doi: 10.1016/j.energy.2010.10.040.
[37] M.N. Khan and I. Tlili. Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: Energy and exergy analysis. Energy Reports, 4:497–506, 2018. doi: 10.1016/j.egyr.2018.07.007.
[38] M.N. Khan and I. Tlili. Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation. Journal of Cleaner Production, 192:443–452, 2018. doi: 10.1016/j.jclepro.2018.04.272.
[39] M. Korobitsyn. Industrial applications of the air bottoming cycle. Energy Conversion and Management, 43(9-12):1311–1322, 2002. doi: 10.1016/S0196-8904(02)00017-1.
[40] T.K. Ibrahim and M.M. Rahman. optimum performance improvements of the combined cycle based on an intercooler–reheated gas turbine. Journal of Energy Resources Technology, 137(6):061601, 2015. doi: 10.1115/1.4030447.
Go to article

Authors and Affiliations

Łukasz Woliński
Paweł Malczyk

Download PDF Download RIS Download Bibtex

Abstract

Limb physical movements disability is the result of illnesses or serious injuries, impaired execution of daily activities and limitations or even inability to perform working activity. Restoration of fitness in such cases is possible through rehabilitation that requires arduous repetition of appropriate exercises with participation of an experienced physiotherapist. Exercises using the robot to repeat movements would speed up the process of rehabilitation. The paper presents the concept of rehabilitation robot control system realizing a specified purpose.

Go to article

Authors and Affiliations

Andrzej Michnik
Jacek Brandt
Zbyszek Szczurek
Michał Bachorz
Zbigniew Paszenda
Robert Michnik
Jacek Jurkojć
Wiesław Rycerski
Jan Janota
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper is to present an in-pipe modular robotic system that can navigate inaccessible industrial pipes in order to check their condition, locate leakages, and clean the ventilation systems. The aspects concerning the development of a lightweight and energy efficient modular robotic system are presented. The paper starts with a short introduction about modular inspection systems in the first chapter, followed by design aspects and finalizing with the test of the developed robotic system.

Go to article

Authors and Affiliations

A. Adrianluţei
Mihai Tâtar
Vistrian Mâtieş
Download PDF Download RIS Download Bibtex

Abstract

This paper identifies the adverse events occurring during the execution of water supply and sewerage systems construction. The basis for this paper is research conducted in 2010-2014 on the construction sites of water supply and sewerage systems located in the provinces of Lower Silesia and Opole. The research consisted of direct observations of construction sites and review of construction documentation. It showed that work stoppages on the examined construction sites were frequent. They were caused by violations of work discipline by the production employees, adverse weather conditions, and defects in the project documentation. The study demonstrated that in almost every case, these bad an adverse effect on the completion date and budget of the investment. The analyses show that in such important and expensive investments as water supply and sewerage systems, organizational structures in which a special role is assigned to middle-rank personnel should be adopted.

Go to article

Authors and Affiliations

I. Rybka
E. Bondar-Nowakowska
M. Połoński
Download PDF Download RIS Download Bibtex

Abstract

In Poland, it often happens that construction objects are subject to demolition work for different reasons. Demolition, according the Construction Law, is defined as a type of construction works and, as such, represents a particular type of construction project. As in other construction projects, a very important phase, in addition to execution of the works, is to prepare, design and plan demolition works. Some demolition activities are covered by appropriate regulations and can be described as typical. On the other hand the technical side of demolition works depends on many factors such as: the type of building, its age, technical condition, type of construction, etc. This article covers the analysis of the stages and tasks in the preparatory phase of the building demolition. This work will also present a description of the tasks carried out during the demolition works based on the example of a historic tenement house located in Krakow. This analysis aims to identify implementation problems and sources of risk that may occur during this type of construction work.

Go to article

Authors and Affiliations

A. Sobotka
A. Radziejowska
J. Czaja
Download PDF Download RIS Download Bibtex

Abstract

The issues of medical robots have been approached for 12 years in the Institute of Machine Tools and Production Engineering of the Technical University of Lodz. In the last two years, the scope of research related to the miniaturization of surgical tools, automated changing of these tools with the use of a tool depot designed for this purpose, equipping the robot in the sense of touch and developing the software which provides ergonomic and intuitive robot control with the use of all its functions. In the telemanipulator control, strong emphasis is placed on the intuitiveness of control, which is hard to be ensured due to the fact that the robot tool is observed by a laparoscopic camera, whose orientation and position may vary. That is the reason for developing a new algorithm. It copies the increments of the position and orientation measured in relation to the monitor coordinate system onto the robot tool movement and orientation, which are measured in relation to the camera coordinates system. In this algorithm it is necessary to solve inverse kinematics, which has a discontinuity. Avoiding the discontinuity is achieved by mapping the solution with the cosine function. It causes smooth pass through the area of discontinuity in this way avoiding the singularity.

Go to article

Authors and Affiliations

Adam Niewola
Leszek Podsędkowski
Piotr Wróblewski
Piotr Zawiasa
Marcin Zawierucha

This page uses 'cookies'. Learn more